layer.py 11.4 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
D
dangqingqing 已提交
74

Q
qiaolongfei 已提交
75
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
76 77 78
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default
from paddle.trainer_config_helpers.layers import layer_support
Q
qiaolongfei 已提交
79 80

import data_type
L
Luo Tao 已提交
81 82
import activation
import attr
Q
qiaolongfei 已提交
83

Q
qiaolongfei 已提交
84
__all__ = [
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    'parse_network',
    'data',
    'fc',
    'max_id',
    'classification_cost',
    'cross_entropy_cost',
    'cross_entropy_with_selfnorm_cost',
    'regression_cost',
    'multi_binary_label_cross_entropy_cost',
    'rank_cost',
    'lambda_cost',
    'sum_cost',
    'huber_cost'
    'full_matrix_projection',
    'trans_full_matrix_projection',
    'table_projection',
    'identity_projection',
    'scaling_projection',
    'dotmul_projection',
    'context_projection',
    'conv_projection',
Q
qiaolongfei 已提交
106 107
]

D
dangqingqing 已提交
108 109 110 111 112 113 114
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
115

Q
qiaolongfei 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
131
class Layer(object):
132
    def __init__(self, name=None, parent_layers=None):
Q
qiaolongfei 已提交
133
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
134
        self.name = name
Q
qiaolongfei 已提交
135
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
136 137 138 139 140 141

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
142 143
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
144
                              collections.Sequence):
Q
qiaolongfei 已提交
145
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
146 147
                    context=context)
            else:
Q
qiaolongfei 已提交
148 149 150
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
151

152 153 154
        if self.name is None:
            return self.to_proto_impl(**kwargs)

Q
qiaolongfei 已提交
155 156 157 158 159 160 161 162
        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


163
def __convert_to_v2__(method_name, name_prefix=None, parent_names=None):
Q
qiaolongfei 已提交
164 165 166 167 168
    if name_prefix is not None:
        wrapper = wrap_name_default(name_prefix=name_prefix)
    else:
        wrapper = None

Q
qiaolongfei 已提交
169
    class V2LayerImpl(Layer):
Q
qiaolongfei 已提交
170 171 172 173
        def __init__(self, name=None, **kwargs):
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
174 175
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
176 177 178 179 180

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

Q
qiaolongfei 已提交
181
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
182 183 184 185 186 187 188 189 190 191 192
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
193
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
194

Q
qiaolongfei 已提交
195
    return V2LayerImpl
Q
qiaolongfei 已提交
196 197


Q
qiaolongfei 已提交
198 199 200 201 202 203 204
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
205
    def __init__(self, name, type, **kwargs):
206
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
207

Q
qiaolongfei 已提交
208
        self.type = type
Q
qiaolongfei 已提交
209 210
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
211 212 213 214 215

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
216
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
217 218
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
219 220
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
221 222 223
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


224 225 226 227 228 229 230 231 232 233
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
234
        pass
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False

        self.__parent_layers__ = dict()
        other_kwargs = dict()
        self.input_name = 'input'
        self.__parent_layers__[self.input_name] = []
        if input is not None:
            self.__parent_layers__[self.input_name] = input

        self.name = name
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr

        Layer.__init__(self, name, self.__parent_layers__)
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
            self.__parent_layers__[self.input_name].append(other)
            return self
        else:
            raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()

    def __enter__(self):
        assert len(self.__parent_layers__[self.input_name]) == 0
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


@wrap_name_default("mixed")
D
dangqingqing 已提交
286
@wrap_act_default(act=activation.Linear())
287 288 289 290 291 292 293 294 295 296 297
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Q
qiaolongfei 已提交
298
data = DataLayerV2
Q
qiaolongfei 已提交
299 300
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
L
Luo Tao 已提交
301
    'maxid_layer', name_prefix='maxid', parent_names=['input'])
Q
qiaolongfei 已提交
302
classification_cost = __convert_to_v2__(
Q
qiaolongfei 已提交
303 304
    'classification_cost',
    name_prefix='classification_cost',
L
Luo Tao 已提交
305 306 307 308 309
    parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
    'regression_cost',
    name_prefix='regression_cost',
    parent_names=['input', 'label', 'weight'])
Q
qiaolongfei 已提交
310 311 312 313
cross_entropy_cost = __convert_to_v2__(
    'cross_entropy',
    name_prefix='cross_entropy',
    parent_names=['input', 'label'])
L
Luo Tao 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
    'cross_entropy_with_selfnorm',
    name_prefix='cross_entropy_with_selfnorm',
    parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
    'multi_binary_label_cross_entropy',
    name_prefix='multi_binary_label_cross_entropy',
    parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
    'rank_cost',
    name_prefix='rank_cost',
    parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
    'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
    'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
    'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
Q
qiaolongfei 已提交
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
# convert projection
projection_list = [
    # [V1_method_name], all the parent_names is `input`
    'full_matrix_projection',
    'trans_full_matrix_projection',
    'table_projection',
    'scaling_projection',
    'dotmul_projection',
    'context_projection',
    'conv_projection',
    'identity_projection',
]
for prj in projection_list:
    globals()[prj] = __convert_to_v2__(prj, parent_names=['input'])

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
    globals()[op[0]] = __convert_to_v2__(op[0], parent_names=op[1])