layer.py 9.0 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73 74
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
Q
qiaolongfei 已提交
75 76

import data_type
Q
qiaolongfei 已提交
77

Q
qiaolongfei 已提交
78 79
__all__ = [
    'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
L
Luo Tao 已提交
80 81 82
    'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost',
    'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
    'sum_cost', 'huber_cost'
Q
qiaolongfei 已提交
83 84
]

Q
qiaolongfei 已提交
85

Q
qiaolongfei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
101
class Layer(object):
Q
qiaolongfei 已提交
102 103
    def __init__(self, name, parent_layers):
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
104 105
        assert isinstance(name, basestring)
        self.name = name
Q
qiaolongfei 已提交
106
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
107 108 109 110 111 112

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
113 114
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
115
                              collections.Sequence):
Q
qiaolongfei 已提交
116
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
117 118
                    context=context)
            else:
Q
qiaolongfei 已提交
119 120 121
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
122 123 124 125 126 127 128 129 130

        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


Q
qiaolongfei 已提交
131
def __convert_to_v2__(method_name, name_prefix, parent_names):
Q
qiaolongfei 已提交
132 133 134 135 136
    if name_prefix is not None:
        wrapper = wrap_name_default(name_prefix=name_prefix)
    else:
        wrapper = None

Q
qiaolongfei 已提交
137
    class V2LayerImpl(Layer):
Q
qiaolongfei 已提交
138 139 140 141
        def __init__(self, name=None, **kwargs):
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
142 143
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
144 145 146 147 148

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

Q
qiaolongfei 已提交
149
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
            return getattr(conf_helps, method_name)(name=self.name, **args)

Q
qiaolongfei 已提交
163
    return V2LayerImpl
Q
qiaolongfei 已提交
164 165


Q
qiaolongfei 已提交
166 167 168 169 170 171 172
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
173
    def __init__(self, name, type, **kwargs):
174
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
175

Q
qiaolongfei 已提交
176
        self.type = type
Q
qiaolongfei 已提交
177 178
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
179 180 181 182 183

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
184
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
185 186
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
187 188
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
189 190 191 192
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


data = DataLayerV2
Q
qiaolongfei 已提交
193 194
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
L
Luo Tao 已提交
195
    'maxid_layer', name_prefix='maxid', parent_names=['input'])
Q
qiaolongfei 已提交
196
classification_cost = __convert_to_v2__(
Q
qiaolongfei 已提交
197 198
    'classification_cost',
    name_prefix='classification_cost',
L
Luo Tao 已提交
199 200 201 202 203
    parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
    'regression_cost',
    name_prefix='regression_cost',
    parent_names=['input', 'label', 'weight'])
Q
qiaolongfei 已提交
204 205 206 207
cross_entropy_cost = __convert_to_v2__(
    'cross_entropy',
    name_prefix='cross_entropy',
    parent_names=['input', 'label'])
L
Luo Tao 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
    'cross_entropy_with_selfnorm',
    name_prefix='cross_entropy_with_selfnorm',
    parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
    'multi_binary_label_cross_entropy',
    name_prefix='multi_binary_label_cross_entropy',
    parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
    'rank_cost',
    name_prefix='rank_cost',
    parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
    'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
    'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
    'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
Q
qiaolongfei 已提交
226 227

if __name__ == '__main__':
228 229
    pixel = data(name='pixel', type=data_type.dense_vector(784))
    label = data(name='label', type=data_type.integer_value(10))
L
Luo Tao 已提交
230 231 232
    weight = data(name='weight', type=data_type.dense_vector(10))
    score = data(name='score', type=data_type.dense_vector(1))

Q
qiaolongfei 已提交
233 234 235 236
    hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation())
    inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation())
    maxid = max_id(input=inference)
    cost1 = classification_cost(input=inference, label=label)
L
Luo Tao 已提交
237 238 239 240 241 242 243 244 245 246
    cost2 = classification_cost(input=inference, label=label, weight=weight)
    cost3 = cross_entropy_cost(input=inference, label=label)
    cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label)
    cost5 = regression_cost(input=inference, label=label)
    cost6 = regression_cost(input=inference, label=label, weight=weight)
    cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label)
    cost8 = rank_cost(left=score, right=score, label=score)
    cost9 = lambda_cost(input=inference, score=score)
    cost10 = sum_cost(input=inference)
    cost11 = huber_cost(input=score, label=label)
Q
qiaolongfei 已提交
247 248

    print parse_network(cost1, cost2)
L
Luo Tao 已提交
249 250 251
    print parse_network(cost3, cost4)
    print parse_network(cost5, cost6)
    print parse_network(cost7, cost8, cost9, cost10, cost11)
Q
qiaolongfei 已提交
252
    print parse_network(inference, maxid)