layer.py 6.4 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68 69 70 71 72 73 74 75

import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import collections


Q
qiaolongfei 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
91
class Layer(object):
Q
qiaolongfei 已提交
92 93
    def __init__(self, name, parent_layers):
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
94 95
        assert isinstance(name, basestring)
        self.name = name
Q
qiaolongfei 已提交
96
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
97 98 99 100 101 102

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
103 104
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
105
                              collections.Sequence):
Q
qiaolongfei 已提交
106
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
107 108
                    context=context)
            else:
Q
qiaolongfei 已提交
109 110 111
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
112 113 114 115 116 117 118 119 120

        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


Q
qiaolongfei 已提交
121
def __convert_to_v2__(method_name, name_prefix, parent_names):
Q
qiaolongfei 已提交
122 123 124 125 126
    if name_prefix is not None:
        wrapper = wrap_name_default(name_prefix=name_prefix)
    else:
        wrapper = None

Q
qiaolongfei 已提交
127
    class V2LayerImpl(Layer):
Q
qiaolongfei 已提交
128 129 130 131 132 133 134 135 136 137
        def __init__(self, name=None, **kwargs):
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
                parent_layers[pname] = kwargs[pname]

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

Q
qiaolongfei 已提交
138
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
            return getattr(conf_helps, method_name)(name=self.name, **args)

Q
qiaolongfei 已提交
152
    return V2LayerImpl
Q
qiaolongfei 已提交
153 154


Q
qiaolongfei 已提交
155 156 157 158 159
data = __convert_to_v2__('data_layer', None, [])
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
    'maxid_layer', name_prefix='maxid_layer', parent_names=['input'])
classification_cost = __convert_to_v2__(
Q
qiaolongfei 已提交
160 161 162
    'classification_cost',
    name_prefix='classification_cost',
    parent_names=['input', 'label'])
Q
qiaolongfei 已提交
163 164 165 166
cross_entropy_cost = __convert_to_v2__(
    'cross_entropy',
    name_prefix='cross_entropy',
    parent_names=['input', 'label'])
Q
qiaolongfei 已提交
167

Q
qiaolongfei 已提交
168 169 170 171
__all__ = [
    'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
    'cross_entropy_cost'
]
Q
qiaolongfei 已提交
172 173

if __name__ == '__main__':
Q
qiaolongfei 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186
    pixel = data(name='pixel', size=784)
    label = data(name='label', size=10)
    hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation())
    inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation())
    maxid = max_id(input=inference)
    cost1 = classification_cost(input=inference, label=label)
    cost2 = cross_entropy_cost(input=inference, label=label)

    print parse_network(cost1)
    print parse_network(cost2)
    print parse_network(cost1, cost2)
    print parse_network(cost2)
    print parse_network(inference, maxid)