pybind.cc 19.3 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
20
#include "paddle/framework/executor.h"
Q
qijun 已提交
21
#include "paddle/framework/feed_fetch_method.h"
22
#include "paddle/framework/framework.pb.h"
D
dzhwinter 已提交
23
#include "paddle/framework/init.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
25
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/lod_tensor_array.h"
27
#include "paddle/framework/prune.h"
Q
qijun 已提交
28
#include "paddle/framework/selected_rows.h"
Z
zchen0211 已提交
29
#include "paddle/operators/cond_op.h"
Y
Yan Chunwei 已提交
30
#include "paddle/operators/net_op.h"
Q
qijun 已提交
31
#include "paddle/platform/enforce.h"
Q
qijun 已提交
32
#include "paddle/platform/place.h"
33
#include "paddle/platform/profiler.h"
Q
qiaolongfei 已提交
34
#include "paddle/pybind/const_value.h"
Y
Yu Yang 已提交
35
#include "paddle/pybind/exception.h"
Q
qijun 已提交
36
#include "paddle/pybind/pybind.h"
37
#include "paddle/pybind/tensor_py.h"
38
#include "paddle/string/to_string.h"
39

D
Dong Zhihong 已提交
40 41
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
dangqingqing 已提交
42
#include "paddle/platform/cuda_profiler.h"
D
Dong Zhihong 已提交
43
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
44 45
#endif

Q
Qiao Longfei 已提交
46 47 48
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

49
namespace paddle {
50
namespace pybind {
51 52 53
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
54 55
}

56
bool IsCompiledWithCUDA() {
57
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
58 59 60 61 62 63
  return false;
#else
  return true;
#endif
}

64 65
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
66

67 68 69 70
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
71 72
  BindException(m);

73 74 75
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
76
      .def("get_dims",
77
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
78
      .def("set_dims",
Q
qijun 已提交
79
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
80
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
81
           })
D
dzhwinter 已提交
82 83 84 85
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
86
      .def("alloc_float",
D
dzhwinter 已提交
87
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
88
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
89
           })
Q
qijun 已提交
90
      .def("alloc_float",
Y
Yu Yang 已提交
91
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
92
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
93 94
           })
      .def("alloc_int",
Y
Yu Yang 已提交
95
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
96
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
97
           })
Q
qijun 已提交
98
      .def("alloc_int",
D
dzhwinter 已提交
99
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
100
             self.mutable_data<int>(place);
Q
qijun 已提交
101
           })
Y
Yu Yang 已提交
102 103
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
104
      .def("set", PyCPUTensorSetFromArray<double>)
105
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
106
      .def("set", PyCPUTensorSetFromArray<bool>)
107
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
108 109
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
110
      .def("set", PyCUDATensorSetFromArray<double>)
111
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
112
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
113
#endif
114
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
115 116 117 118 119
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
120

121
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
122 123
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
124 125 126
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
127
#ifndef PADDLE_WITH_CUDA
128
            new (&instance) LoDTensor(lod);
129
#else
Y
Yu Yang 已提交
130
             LoD new_lod;
131 132
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
133
             new (&instance) LoDTensor(new_lod);
134
#endif
135
          })
Y
Yu Yang 已提交
136
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
137
      .def("set_lod",
138
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
139
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
140
             self.set_lod(lod);
141
#else
Y
Yu Yang 已提交
142
             LoD new_lod;
143 144 145 146
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
147
           })
148
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
149
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
150
        return self.lod();
151 152 153 154 155
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
156
               [](Vector<size_t> item) ->
157 158 159 160 161 162 163 164
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
165 166
      });

Q
qijun 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
180 181 182 183 184 185 186 187 188
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
189 190 191 192 193 194 195 196 197 198 199
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
200

201
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
202 203 204

All parameter, weight, gradient are variables in Paddle.
)DOC")
205
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
206
      .def("set_int",
207 208
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
209 210 211 212 213 214 215
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
216
      .def("get_tensor",
217 218
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
219 220
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
221 222 223
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
224 225 226 227 228
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
229 230 231
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
232 233 234 235 236 237 238
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
239
      .def("get_net",
D
dongzhihong 已提交
240 241
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
242
           },
Y
Yu Yang 已提交
243
           py::return_value_policy::reference);
244

245
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
246
      .def("var",
247
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
248
             return self.Var(name);
Y
Yu Yang 已提交
249
           },
250
           py::return_value_policy::reference)
251
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
252
      .def(py::init<>())
253
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
254
           py::return_value_policy::reference)
Y
Yu Yang 已提交
255
      .def("drop_kids", &Scope::DropKids);
256

Y
Yu Yang 已提交
257 258
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
259 260
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
261 262 263 264 265 266 267 268 269 270
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
271 272
    return ret_values;
  });
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
289
  m.def("prune", [](const ProgramDesc &origin,
290
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
291
    ProgramDesc prog_with_targets(origin);
292
    for (const auto &t : targets) {
293
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
294
    }
295
    proto::ProgramDesc pruned_desc;
296
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
297
    return new ProgramDesc(pruned_desc);
298
  });
Y
Yu Yang 已提交
299
  m.def("inference_optimize", [](ProgramDesc &origin) {
300
    proto::ProgramDesc pruned_desc;
301
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
302
    return new ProgramDesc(pruned_desc);
303
  });
F
fengjiayi 已提交
304 305
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
306 307 308
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
309 310
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
311
  // clang-format off
Y
Yu Yang 已提交
312
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
313 314
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
315
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
316 317 318
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
319
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
320
                      -> paddle::platform::DeviceContext* {
321
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
322
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
323
#else
Q
qijun 已提交
324
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
325
#endif
Q
qijun 已提交
326
                  });
D
Dong Zhihong 已提交
327
// clang-format on
Q
qijun 已提交
328

D
Dong Zhihong 已提交
329 330 331
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
332
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
333
      .def(py::init<int>())
D
dzhwinter 已提交
334
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
335

336 337 338
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
339

Y
Yu Yang 已提交
340 341 342 343 344 345 346
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
347
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
348 349 350
             self = gpu_place;
           });

Y
Yu Yang 已提交
351 352 353
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
354
                    proto::OpDesc desc;
Y
Yu Yang 已提交
355 356 357 358 359
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
360
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
361 362 363 364 365 366
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
367
      .def("run",
368
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
369 370 371
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
372
              const platform::CUDAPlace &place) { self.Run(scope, place); })
Y
Yu Yang 已提交
373 374 375 376 377 378 379
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
380 381
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
382
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
383
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
384 385 386 387
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
388

Y
Yu Yang 已提交
389 390 391 392 393 394 395
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
396 397
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
398 399 400 401
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
402

Z
cond op  
zchen0211 已提交
403 404 405 406
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
407
                    proto::OpDesc desc;
Z
cond op  
zchen0211 已提交
408 409 410 411 412
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
413
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
414 415 416 417 418 419 420 421 422 423 424
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
425
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
426
      .def(py::init<const platform::Place &>())
427
      .def("run", &Executor::Run);
F
fengjiayi 已提交
428

429
  m.def("unique_integer", UniqueIntegerGenerator);
D
dzhwinter 已提交
430
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
431
  m.def("init_glog", framework::InitGLOG);
D
dzhwinter 已提交
432
  m.def("init_devices", &framework::InitDevices);
433

434
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
435

436
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
437
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
438

F
fengjiayi 已提交
439 440 441 442
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Q
qiaolongfei 已提交
443
  BindConstValue(m);
Y
Yu Yang 已提交
444

Y
Yu Yang 已提交
445 446 447 448 449 450 451 452 453
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
471
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
472
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
473
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
474 475 476 477

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
478
#endif
Y
Yu Yang 已提交
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
  m.def("reset_profiler", platform::ResetProfiler);
498
  return m.ptr();
L
Luo Tao 已提交
499
}
500
}  // namespace pybind
501
}  // namespace paddle