pybind.cc 18.3 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
Qiao Longfei 已提交
17
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
18
#include "paddle/framework/executor.h"
Q
qijun 已提交
19
#include "paddle/framework/feed_fetch_method.h"
20
#include "paddle/framework/framework.pb.h"
D
dangqingqing 已提交
21
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
22
#include "paddle/framework/selected_rows.h"
23
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
24
#include "paddle/operators/cond_op.h"
25
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
26
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
27
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
28
#include "paddle/platform/enforce.h"
Q
qijun 已提交
29
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
30
#include "paddle/pybind/exception.h"
Q
qijun 已提交
31
#include "paddle/pybind/pybind.h"
32
#include "paddle/pybind/tensor_py.h"
33
#include "paddle/string/to_string.h"
34

35
namespace paddle {
36
namespace pybind {
37 38 39 40 41
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
42
bool IsCompileGPU() {
43
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
44 45 46 47 48 49
  return false;
#else
  return true;
#endif
}

50
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
51
  py::module m("core", "C++ core of PaddlePaddle");
52

53 54 55 56
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
57 58
  BindException(m);

59 60 61
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
62
      .def("get_dims",
63
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
64
      .def("set_dims",
Q
qijun 已提交
65
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
66
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
67 68
           })
      .def("alloc_float",
Y
Yu Yang 已提交
69
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
70
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
71
           })
Q
qijun 已提交
72
      .def("alloc_float",
Y
Yu Yang 已提交
73
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
74
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
75 76
           })
      .def("alloc_int",
Y
Yu Yang 已提交
77
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
78
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
79
           })
Q
qijun 已提交
80
      .def("alloc_int",
Y
Yu Yang 已提交
81
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
82
             self.mutable_data<int>(place);
Q
qijun 已提交
83
           })
Y
Yu Yang 已提交
84 85
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
86
      .def("set", PyCPUTensorSetFromArray<double>)
87
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
88 89
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
90
      .def("set", PyCUDATensorSetFromArray<double>)
Q
qijun 已提交
91
#endif
92
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
93 94 95 96 97
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
98

99
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
100 101
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
102 103 104
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
105
#ifndef PADDLE_WITH_CUDA
106
            new (&instance) LoDTensor(lod);
107
#else
Y
Yu Yang 已提交
108
             LoD new_lod;
109 110
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
111
             new (&instance) LoDTensor(new_lod);
112
#endif
113
          })
D
dangqingqing 已提交
114
      .def("set_lod",
115
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
116
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
117
             self.set_lod(lod);
118
#else
Y
Yu Yang 已提交
119
             LoD new_lod;
120 121 122 123
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
124
           })
125
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
126
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
127
        return self.lod();
128 129 130 131 132
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
133
               [](Vector<size_t> item) ->
134 135 136 137 138 139 140 141
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
142 143
      });

Q
qijun 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
157 158 159 160 161 162 163 164 165
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
166 167 168 169 170 171 172 173 174 175 176
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
177

178
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
179 180 181

All parameter, weight, gradient are variables in Paddle.
)DOC")
182
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
183
      .def("set_int",
184 185
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
186 187 188 189 190 191 192
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
193
      .def("get_tensor",
194 195
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
196 197
           },
           py::return_value_policy::reference)
Q
qijun 已提交
198 199 200 201 202
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
203
      .def("get_net",
D
dongzhihong 已提交
204 205
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
206
           },
Y
Yu Yang 已提交
207
           py::return_value_policy::reference);
208

209
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
210
      .def("var",
211
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
212
             return self.Var(name);
Y
Yu Yang 已提交
213
           },
214
           py::return_value_policy::reference)
215
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
216
      .def(py::init<>())
217
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
218
           py::return_value_policy::reference)
219
      .def("drop_kids", &Scope::DropKids);
220

Y
Yu Yang 已提交
221 222
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
223 224
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
225 226 227 228

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
229
      std::string str;
Y
Yu Yang 已提交
230
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
231
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
232 233
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
234 235
    return ret_values;
  });
236 237 238
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
239 240
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
241
  // clang-format off
Y
Yu Yang 已提交
242
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
243 244
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
245
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
246 247 248 249 250
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
251
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
252
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
253
#else
Q
qijun 已提交
254
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
255
#endif
Q
qijun 已提交
256
                  });
Q
qijun 已提交
257
  // clang-format on
Q
qijun 已提交
258

259 260 261
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
262

263 264 265
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
266

Y
Yu Yang 已提交
267 268 269 270 271 272 273 274 275
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
276
                    return OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
277 278 279 280 281 282
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
283
      .def("run",
284
           [](OperatorBase &self, const Scope &scope,
285 286 287 288
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
289 290 291 292 293 294 295
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
296 297
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
298
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
299
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
300 301 302 303
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
304

Y
Yu Yang 已提交
305 306 307 308 309 310 311
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
312 313
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
314 315 316 317
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
318

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
369
  // recurrent_op
Y
Yu Yang 已提交
370 371 372 373 374 375 376 377 378 379
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
380
            auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
381 382
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
383 384 385 386
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
387

388 389 390 391 392 393 394 395 396 397
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
398
                    auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
      .def("set_stepnet",
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
               -> void { self.SetStepNet(net.Clone()); })
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.state(name); })
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.step_input(name); })
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.step_output(name); });

Z
cond op  
zchen0211 已提交
415 416 417 418 419 420 421 422 423 424
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
425
                    auto cond_op = OpRegistry::CreateOp(desc, nullptr);
Z
cond op  
zchen0211 已提交
426 427 428 429 430 431 432 433 434 435 436
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
437 438 439 440 441 442 443 444
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
      .def("run",
           [](Executor &self, const ProgramDesc &program_desc, int block_id) {
             framework::Scope &global_scope = GetGlobalScope();
             self.Run(program_desc, &global_scope, block_id);
           });

445 446
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
447
  m.def("is_compile_gpu", IsCompileGPU);
Q
qijun 已提交
448 449 450 451
  m.def("set_feed_variable_float", framework::SetFeedVariable<float>);
  m.def("set_feed_variable_double", framework::SetFeedVariable<double>);
  m.def("set_feed_variable_int", framework::SetFeedVariable<int>);
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
452

F
fengjiayi 已提交
453 454 455 456
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
457

458
  return m.ptr();
L
Luo Tao 已提交
459
}
460
}  // namespace pybind
461
}  // namespace paddle