pybind.cc 19.2 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
QI JUN 已提交
19
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
20
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
21
#include "paddle/framework/executor.h"
Q
qijun 已提交
22
#include "paddle/framework/feed_fetch_method.h"
23
#include "paddle/framework/framework.pb.h"
D
dangqingqing 已提交
24
#include "paddle/framework/lod_tensor.h"
25
#include "paddle/framework/prune.h"
Q
qijun 已提交
26
#include "paddle/framework/selected_rows.h"
27
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
28
#include "paddle/operators/cond_op.h"
29
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
30
#include "paddle/operators/net_op.h"
Q
qijun 已提交
31
#include "paddle/platform/enforce.h"
Q
qijun 已提交
32
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
33
#include "paddle/pybind/exception.h"
Q
qijun 已提交
34
#include "paddle/pybind/pybind.h"
35
#include "paddle/pybind/tensor_py.h"
36
#include "paddle/string/to_string.h"
37

D
Dong Zhihong 已提交
38 39
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
40
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
41 42
#endif

43
namespace paddle {
44
namespace pybind {
45 46 47
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
48 49
}

Q
QI JUN 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
std::once_flag gflags_init_flag;

// TODO(qijun) move init gflags to init.cc
void InitGflags(std::vector<std::string> &argv) {
  std::call_once(gflags_init_flag, [&]() {
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(1) << "Init commandline: " << line;
  });
}

Q
qijun 已提交
68
bool IsCompileGPU() {
69
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
70 71 72 73 74 75
  return false;
#else
  return true;
#endif
}

76
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
77
  py::module m("core", "C++ core of PaddlePaddle");
78

79 80 81 82
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
83 84
  BindException(m);

85 86 87
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
88
      .def("get_dims",
89
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
90
      .def("set_dims",
Q
qijun 已提交
91
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
92
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
93 94
           })
      .def("alloc_float",
Y
Yu Yang 已提交
95
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
96
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
97
           })
Q
qijun 已提交
98
      .def("alloc_float",
Y
Yu Yang 已提交
99
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
100
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
101 102
           })
      .def("alloc_int",
Y
Yu Yang 已提交
103
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
104
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
105
           })
Q
qijun 已提交
106
      .def("alloc_int",
Y
Yu Yang 已提交
107
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
108
             self.mutable_data<int>(place);
Q
qijun 已提交
109
           })
Y
Yu Yang 已提交
110 111
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
112
      .def("set", PyCPUTensorSetFromArray<double>)
113
      .def("set", PyCPUTensorSetFromArray<int64_t>)
114
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
115 116
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
117
      .def("set", PyCUDATensorSetFromArray<double>)
118
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Q
qijun 已提交
119
#endif
120
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
121 122 123 124 125
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
126

127
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
128 129
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
130 131 132
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
133
#ifndef PADDLE_WITH_CUDA
134
            new (&instance) LoDTensor(lod);
135
#else
Y
Yu Yang 已提交
136
             LoD new_lod;
137 138
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
139
             new (&instance) LoDTensor(new_lod);
140
#endif
141
          })
Y
Yu Yang 已提交
142
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
143
      .def("set_lod",
144
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
145
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
146
             self.set_lod(lod);
147
#else
Y
Yu Yang 已提交
148
             LoD new_lod;
149 150 151 152
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
153
           })
154
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
155
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
156
        return self.lod();
157 158 159 160 161
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
162
               [](Vector<size_t> item) ->
163 164 165 166 167 168 169 170
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
171 172
      });

Q
qijun 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
186 187 188 189 190 191 192 193 194
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
195 196 197 198 199 200 201 202 203 204 205
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
206

207
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
208 209 210

All parameter, weight, gradient are variables in Paddle.
)DOC")
211
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
212
      .def("set_int",
213 214
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
215 216 217 218 219 220 221
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
222
      .def("get_tensor",
223 224
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
225 226
           },
           py::return_value_policy::reference)
Q
qijun 已提交
227 228 229 230 231
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
232 233 234 235 236 237 238
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
239
      .def("get_net",
D
dongzhihong 已提交
240 241
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
242
           },
Y
Yu Yang 已提交
243
           py::return_value_policy::reference);
244

245
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
246
      .def("var",
247
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
248
             return self.Var(name);
Y
Yu Yang 已提交
249
           },
250
           py::return_value_policy::reference)
251
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
252
      .def(py::init<>())
253
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
254
           py::return_value_policy::reference)
Y
Yu Yang 已提交
255
      .def("drop_kids", &Scope::DropKids);
256

Y
Yu Yang 已提交
257 258
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
259 260
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
261 262 263 264 265 266 267 268 269 270
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
271 272
    return ret_values;
  });
273 274 275 276
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
277
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
278 279 280 281 282
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
283 284 285
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
286 287
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
288
  // clang-format off
Y
Yu Yang 已提交
289
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
290 291
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
292
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
293 294 295 296 297
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
298
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
299
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
300
#else
Q
qijun 已提交
301
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
302
#endif
Q
qijun 已提交
303
                  });
D
Dong Zhihong 已提交
304
// clang-format on
Q
qijun 已提交
305

D
Dong Zhihong 已提交
306 307 308
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
309 310 311
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
312

313 314 315
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
316

Y
Yu Yang 已提交
317 318 319 320 321 322 323 324 325 326 327
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
328 329 330 331 332 333 334 335 336
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
337
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
338 339 340 341 342 343
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
344
      .def("run",
345
           [](OperatorBase &self, const Scope &scope,
346 347 348 349
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
350 351 352 353 354 355 356
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
357 358
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
359
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
360
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
361 362 363 364
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
365

Y
Yu Yang 已提交
366 367 368 369 370 371 372
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
373 374
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
375 376 377 378
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
379

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

430 431 432 433 434 435 436 437 438 439
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
440
                    auto rnn_op = OpRegistry::CreateOp(desc);
441 442 443
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
444
      .def("set_step_unit",
445
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
446
               -> void { self.rnn.SetStepUnit(net.Clone()); })
447 448
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
449
               -> const TensorArray & { return self.rnn.state(name); })
450 451
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
452
               -> const TensorArray & { return self.rnn.step_input(name); })
453 454
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
455
               -> const TensorArray & { return self.rnn.step_output(name); });
456

Z
cond op  
zchen0211 已提交
457 458 459 460 461 462 463 464 465 466
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
467
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
468 469 470 471 472 473 474 475 476 477 478
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
479 480
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
481
      .def("run", &Executor::Run);
F
fengjiayi 已提交
482

483
  m.def("unique_integer", UniqueIntegerGenerator);
Q
QI JUN 已提交
484
  m.def("init_gflags", InitGflags);
485

Q
qijun 已提交
486
  m.def("is_compile_gpu", IsCompileGPU);
487
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
488
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
489

F
fengjiayi 已提交
490 491 492 493
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
494

Y
Yu Yang 已提交
495
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
496
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
497
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
Dong Zhihong 已提交
498
#endif
Y
Yu Yang 已提交
499

500
  return m.ptr();
L
Luo Tao 已提交
501
}
502
}  // namespace pybind
503
}  // namespace paddle