pybind.cc 16.8 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/pybind/protobuf.h"
16

Q
Qiao Longfei 已提交
17
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
18
#include "paddle/framework/executor.h"
D
dangqingqing 已提交
19
#include "paddle/framework/lod_tensor.h"
20
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
21
#include "paddle/operators/cond_op.h"
22
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
24
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
25
#include "paddle/platform/enforce.h"
Q
qijun 已提交
26
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
27
#include "paddle/pybind/exception.h"
L
Luo Tao 已提交
28
#include "paddle/pybind/pybind.h"
29
#include "paddle/pybind/tensor_py.h"
30
#include "paddle/string/to_string.h"
31

32
namespace paddle {
33
namespace pybind {
34 35 36 37 38
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
39
bool IsCompileGPU() {
40
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
41 42 43 44 45 46
  return false;
#else
  return true;
#endif
}

47
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
48
  py::module m("core", "C++ core of PaddlePaddle");
49

50 51 52 53
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
54 55
  BindException(m);

56 57 58
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
59
      .def("get_dims",
60
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
61
      .def("set_dims",
Q
qijun 已提交
62
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
63
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
64 65
           })
      .def("alloc_float",
Y
Yu Yang 已提交
66
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
67
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
68
           })
Q
qijun 已提交
69
      .def("alloc_float",
Y
Yu Yang 已提交
70
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
71
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
72 73
           })
      .def("alloc_int",
Y
Yu Yang 已提交
74
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
75
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
76
           })
Q
qijun 已提交
77
      .def("alloc_int",
Y
Yu Yang 已提交
78
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
79
             self.mutable_data<int>(place);
Q
qijun 已提交
80
           })
Y
Yu Yang 已提交
81 82
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
83
      .def("set", PyCPUTensorSetFromArray<double>)
84
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
85 86
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
87
      .def("set", PyCUDATensorSetFromArray<double>)
Q
qijun 已提交
88
#endif
89
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
90 91 92 93 94
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
95

96
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
97 98
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
99 100 101
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
102
#ifndef PADDLE_WITH_CUDA
103
            new (&instance) LoDTensor(lod);
104
#else
Y
Yu Yang 已提交
105
             LoD new_lod;
106 107
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
108
             new (&instance) LoDTensor(new_lod);
109
#endif
110
          })
D
dangqingqing 已提交
111
      .def("set_lod",
112
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
113
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
114
             self.set_lod(lod);
115
#else
Y
Yu Yang 已提交
116
             LoD new_lod;
117 118 119 120
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
121
           })
122
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
123
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
124
        return self.lod();
125 126 127 128 129
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
130
               [](Vector<size_t> item) ->
131 132 133 134 135 136 137 138
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
139 140
      });

141
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
142 143 144

All parameter, weight, gradient are variables in Paddle.
)DOC")
145
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
146
      .def("set_int",
147 148
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
149 150 151 152 153 154 155
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
156
      .def("get_tensor",
157 158
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
159 160
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
161
      .def("get_net",
D
dongzhihong 已提交
162 163
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
164
           },
Y
Yu Yang 已提交
165
           py::return_value_policy::reference);
166

167
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
168
      .def("var",
169
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
170
             return self.Var(name);
Y
Yu Yang 已提交
171
           },
172
           py::return_value_policy::reference)
173
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
174
      .def(py::init<>())
175
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
176
           py::return_value_policy::reference)
177
      .def("drop_kids", &Scope::DropKids);
178

Y
Yu Yang 已提交
179 180
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
181 182
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
183 184 185 186

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
187
      std::string str;
Y
Yu Yang 已提交
188
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
189
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
190 191
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
192 193
    return ret_values;
  });
194 195 196
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
197 198
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
199
  // clang-format off
Y
Yu Yang 已提交
200
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
201 202
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
203
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
204 205 206 207 208
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
209
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
210
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
211
#else
Q
qijun 已提交
212
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
213
#endif
Q
qijun 已提交
214
                  });
Q
qijun 已提交
215
  // clang-format on
Q
qijun 已提交
216

217 218 219
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
220

221 222 223
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
224

Y
Yu Yang 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    return OpRegistry::CreateOp(desc);
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
241
      .def("run",
242
           [](OperatorBase &self, const Scope &scope,
243 244 245 246
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
247 248 249 250 251 252 253
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
254 255
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
256
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
257
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
258 259 260 261
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
262

Y
Yu Yang 已提交
263 264 265 266 267 268 269
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
270 271
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
272 273 274 275
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
327
  // recurrent_op
Y
Yu Yang 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
            auto rnn_op = OpRegistry::CreateOp(desc);
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
341 342 343 344
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    auto rnn_op = OpRegistry::CreateOp(desc);
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
      .def("set_stepnet",
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
               -> void { self.SetStepNet(net.Clone()); })
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.state(name); })
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.step_input(name); })
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.step_output(name); });

Z
cond op  
zchen0211 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    auto cond_op = OpRegistry::CreateOp(desc);
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
395 396 397 398 399 400 401 402
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
      .def("run",
           [](Executor &self, const ProgramDesc &program_desc, int block_id) {
             framework::Scope &global_scope = GetGlobalScope();
             self.Run(program_desc, &global_scope, block_id);
           });

403 404
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
405
  m.def("is_compile_gpu", IsCompileGPU);
Q
init  
qijun 已提交
406 407 408 409 410 411
  m.def("set_feed_variable", SetFeedVariable<float>);
  // m.def("set_feed_variable", SetFeedVariable<double>);
  // m.def("set_feed_variable", SetFeedVariable<int>);
  m.def("get_fetch_variable", GetFetchVariable<float>);
  // m.def("get_fetch_variable", GetFetchVariable<double>);
  // m.def("get_fetch_variable", GetFetchVariable<int>);
Q
qijun 已提交
412

F
fengjiayi 已提交
413 414 415 416
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
417

418
  return m.ptr();
L
Luo Tao 已提交
419
}
420
}  // namespace pybind
421
}  // namespace paddle