pybind.cc 19.7 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
QI JUN 已提交
19
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
20
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
21
#include "paddle/framework/executor.h"
Q
qijun 已提交
22
#include "paddle/framework/feed_fetch_method.h"
23
#include "paddle/framework/framework.pb.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
25
#include "paddle/framework/lod_tensor.h"
26
#include "paddle/framework/prune.h"
Q
qijun 已提交
27
#include "paddle/framework/selected_rows.h"
28
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
29
#include "paddle/operators/cond_op.h"
30
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
31
#include "paddle/operators/net_op.h"
Q
qijun 已提交
32
#include "paddle/platform/enforce.h"
Q
qijun 已提交
33
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
34
#include "paddle/pybind/exception.h"
Q
qijun 已提交
35
#include "paddle/pybind/pybind.h"
36
#include "paddle/pybind/tensor_py.h"
37
#include "paddle/string/to_string.h"
38

D
Dong Zhihong 已提交
39 40
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
41
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
42 43
#endif

44
namespace paddle {
45
namespace pybind {
46 47 48
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
49 50
}

Q
QI JUN 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
std::once_flag gflags_init_flag;

// TODO(qijun) move init gflags to init.cc
void InitGflags(std::vector<std::string> &argv) {
  std::call_once(gflags_init_flag, [&]() {
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(1) << "Init commandline: " << line;
  });
}

Q
qijun 已提交
69
bool IsCompileGPU() {
70
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
71 72 73 74 75 76
  return false;
#else
  return true;
#endif
}

77
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
78
  py::module m("core", "C++ core of PaddlePaddle");
79

80 81 82 83
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
84 85
  BindException(m);

86 87 88
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
89
      .def("get_dims",
90
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
91
      .def("set_dims",
Q
qijun 已提交
92
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
93
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
94 95
           })
      .def("alloc_float",
Y
Yu Yang 已提交
96
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
97
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
98
           })
Q
qijun 已提交
99
      .def("alloc_float",
Y
Yu Yang 已提交
100
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
102 103
           })
      .def("alloc_int",
Y
Yu Yang 已提交
104
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
105
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
106
           })
Q
qijun 已提交
107
      .def("alloc_int",
Y
Yu Yang 已提交
108
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
109
             self.mutable_data<int>(place);
Q
qijun 已提交
110
           })
Y
Yu Yang 已提交
111 112
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
113
      .def("set", PyCPUTensorSetFromArray<double>)
114
      .def("set", PyCPUTensorSetFromArray<int64_t>)
115
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
116 117
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
118
      .def("set", PyCUDATensorSetFromArray<double>)
119
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Q
qijun 已提交
120
#endif
121
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
122 123 124 125 126
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
127

128
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
129 130
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
131 132 133
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
134
#ifndef PADDLE_WITH_CUDA
135
            new (&instance) LoDTensor(lod);
136
#else
Y
Yu Yang 已提交
137
             LoD new_lod;
138 139
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
140
             new (&instance) LoDTensor(new_lod);
141
#endif
142
          })
Y
Yu Yang 已提交
143
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
144
      .def("set_lod",
145
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
146
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
147
             self.set_lod(lod);
148
#else
Y
Yu Yang 已提交
149
             LoD new_lod;
150 151 152 153
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
154
           })
155
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
156
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
157
        return self.lod();
158 159 160 161 162
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
163
               [](Vector<size_t> item) ->
164 165 166 167 168 169 170 171
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
172 173
      });

Q
qijun 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
187 188 189 190 191 192 193 194 195
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
196 197 198 199 200 201 202 203 204 205 206
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
207

208
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
209 210 211

All parameter, weight, gradient are variables in Paddle.
)DOC")
212
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
213
      .def("set_int",
214 215
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
216 217 218 219 220 221 222
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
223
      .def("get_tensor",
224 225
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
226 227
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
228 229 230
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
231 232 233 234 235
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
236 237 238 239 240 241 242
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
243
      .def("get_net",
D
dongzhihong 已提交
244 245
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
246
           },
Y
Yu Yang 已提交
247
           py::return_value_policy::reference);
248

249
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
250
      .def("var",
251
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
252
             return self.Var(name);
Y
Yu Yang 已提交
253
           },
254
           py::return_value_policy::reference)
255
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
256
      .def(py::init<>())
257
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
258
           py::return_value_policy::reference)
Y
Yu Yang 已提交
259
      .def("drop_kids", &Scope::DropKids);
260

Y
Yu Yang 已提交
261 262
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
263 264
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
265 266 267 268 269 270 271 272 273 274
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
275 276
    return ret_values;
  });
277 278 279 280
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
281
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
282 283 284 285 286
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
287 288 289
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
290 291
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
292
  // clang-format off
Y
Yu Yang 已提交
293
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
294 295
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
296
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
297 298 299 300 301
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
302
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
303
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
304
#else
Q
qijun 已提交
305
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
306
#endif
Q
qijun 已提交
307
                  });
D
Dong Zhihong 已提交
308
// clang-format on
Q
qijun 已提交
309

D
Dong Zhihong 已提交
310 311 312
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
313 314 315
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
316

317 318 319
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
320

Y
Yu Yang 已提交
321 322 323 324 325 326 327 328 329 330 331
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
332 333 334 335 336 337 338 339 340
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
341
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
342 343 344 345 346 347
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
348
      .def("run",
349
           [](OperatorBase &self, const Scope &scope,
350 351 352 353
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
354 355 356 357 358 359 360
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
361 362
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
363
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
364
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
365 366 367 368
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
369

Y
Yu Yang 已提交
370 371 372 373 374 375 376
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
377 378
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
379 380 381 382
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
383

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

434 435 436 437 438 439 440 441 442 443
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
444
                    auto rnn_op = OpRegistry::CreateOp(desc);
445 446 447
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
448
      .def("set_step_unit",
449
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
450
               -> void { self.rnn.SetStepUnit(net.Clone()); })
451 452
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
453
               -> const TensorArray & { return self.rnn.state(name); })
454 455
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
456
               -> const TensorArray & { return self.rnn.step_input(name); })
457 458
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
459
               -> const TensorArray & { return self.rnn.step_output(name); });
460

Z
cond op  
zchen0211 已提交
461 462 463 464 465 466 467 468 469 470
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
471
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
472 473 474 475 476 477 478 479 480 481 482
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
483 484
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
485
      .def("run", &Executor::Run);
F
fengjiayi 已提交
486

487
  m.def("unique_integer", UniqueIntegerGenerator);
Q
QI JUN 已提交
488
  m.def("init_gflags", InitGflags);
489

Q
qijun 已提交
490
  m.def("is_compile_gpu", IsCompileGPU);
491
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
492
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
493

F
fengjiayi 已提交
494 495 496 497
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
498

Y
Yu Yang 已提交
499 500 501 502 503 504 505 506 507
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
508
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
509
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
510
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
Dong Zhihong 已提交
511
#endif
Y
Yu Yang 已提交
512

513
  return m.ptr();
L
Luo Tao 已提交
514
}
515
}  // namespace pybind
516
}  // namespace paddle