device_context.cc 30.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.

Q
qijun 已提交
4 5 6 7
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
8

Q
qijun 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14
#include "paddle/fluid/platform/device_context.h"
W
Wilber 已提交
15
#include <functional>
16
#include <memory>
17
#include <set>
W
Wilber 已提交
18 19
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"
20 21
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/allocator.h"
22

23
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
24
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/platform/cuda_device_guard.h"
26
#endif
F
fwenguang 已提交
27 28 29 30
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#include "paddle/fluid/platform/device/mlu/device_context_allocator.h"
#endif
31
#include "glog/logging.h"
32
#include "paddle/fluid/framework/expect.h"
W
Wilber 已提交
33
#include "paddle/fluid/framework/generator.h"
34
#include "paddle/fluid/memory/allocation/allocator_facade.h"
35
#include "paddle/fluid/platform/device/device_wrapper.h"
36
#include "paddle/fluid/platform/profiler.h"
37
#include "paddle/fluid/platform/profiler/event_tracing.h"
38

39 40 41 42 43
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
44
  if (size == 0) {
45 46
    return Alloc(place, size);
  }
47 48

  if (platform::is_gpu_place(place)) {
49
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
68 69
    return Alloc(place, size);
#else
70 71 72
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
F
fwenguang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    auto* default_dev_ctx = static_cast<platform::MLUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::MLUDeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::MLUDeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use MLU device since it's not compiled with MLU,"
        "Please recompile or reinstall Paddle with MLU support."));
90
#endif
91 92 93
  } else {
    return Alloc(place, size);
  }
94 95 96 97 98
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
99 100 101
namespace paddle {
namespace platform {

102
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
103 104 105
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
106 107 108 109

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
110 111
#endif  // PADDLE_WITH_CUDA

112 113 114 115 116 117 118
DeviceType Place2DeviceType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return platform::DeviceType::CPU;
  } else if (platform::is_gpu_place(place)) {
    return platform::DeviceType::CUDA;
  } else if (platform::is_xpu_place(place)) {
    return platform::DeviceType::XPU;
F
fwenguang 已提交
119 120
  } else if (platform::is_mlu_place(place)) {
    return platform::DeviceType::MLU;
121 122 123 124 125 126
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported place %s to convert into platform::DeviceType.", place));
  }
}

D
dzhwinter 已提交
127 128
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
129
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
130
  VLOG(6) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
131 132
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
133 134
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
F
fwenguang 已提交
135 136
        "with WITH_GPU, WITH_XPU, WITH_IPU, WITH_MLU or WITH_ASCEND_CL option "
        "or check "
J
jianghaicheng 已提交
137 138
        "that your train process set the correct device id if you use "
        "Executor.",
G
GaoWei8 已提交
139
        place));
D
dzhwinter 已提交
140
  }
141
  return it->second.get().get();
D
dzhwinter 已提交
142 143
}

W
Wilber 已提交
144
template <typename DevCtx>
145 146 147 148 149
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
150 151 152 153 154 155 156 157 158 159 160 161
  map_ptr->emplace(
      p, std::async(std::launch::deferred, [=] {
        // lazy evaluation. i.e., only create device context at
        // first `Get`
        auto* dev_ctx = new DevCtx(p);
        if (is_gpu_place(p)) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
          auto* cuda_ctx = dynamic_cast<CUDADeviceContext*>(dev_ctx);
          PADDLE_ENFORCE_NOT_NULL(
              cuda_ctx,
              platform::errors::InvalidArgument(
                  "Failed to dynamic_cast dev_ctx into CUDADeviceContext."));
W
Wilber 已提交
162 163 164 165 166 167
          // Note: A trick method to init context, why GetAllocator interface
          // needs a stream parameter?
          dev_ctx->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetAllocator(p, cuda_ctx->stream())
                                    .get());
          cuda_ctx->PartialInitWithAllocator();
W
Wilber 已提交
168 169
          dev_ctx->SetGenerator(
              framework::GetDefaultCUDAGenerator(p.GetDeviceId()).get());
170 171
#endif
        } else {
W
Wilber 已提交
172 173 174
          dev_ctx->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetAllocator(p)
                                    .get());
W
Wilber 已提交
175
          dev_ctx->SetGenerator(framework::DefaultCPUGenerator().get());
176
        }
L
Leo Chen 已提交
177
        dev_ctx->SetHostGenerator(framework::DefaultCPUGenerator().get());
178 179 180 181 182 183 184 185 186 187
        dev_ctx->SetHostAllocator(
            memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(platform::CPUPlace())
                .get());
        dev_ctx->SetZeroAllocator(
            memory::allocation::AllocatorFacade::Instance()
                .GetZeroAllocator(p)
                .get());
        return PtrType(dev_ctx);
      }));
C
chengduozh 已提交
188 189
}

D
dzhwinter 已提交
190 191
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
192 193 194 195 196
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
197
  std::set<Place> set;
Y
Yu Yang 已提交
198 199 200 201 202
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
203
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
204
      EmplaceDeviceContext<MKLDNNDeviceContext>(&device_contexts_, p);
205
#else
W
Wilber 已提交
206
      EmplaceDeviceContext<CPUDeviceContext>(&device_contexts_, p);
207
#endif
Y
Yu Yang 已提交
208
    } else if (platform::is_gpu_place(p)) {
209
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
Wilber 已提交
210
      EmplaceDeviceContext<CUDADeviceContext>(&device_contexts_, p);
D
dzhwinter 已提交
211
#else
G
GaoWei8 已提交
212 213 214
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
215 216
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
217
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
Wilber 已提交
218
      EmplaceDeviceContext<CUDAPinnedDeviceContext>(&device_contexts_, p);
C
chengduoZH 已提交
219
#else
G
GaoWei8 已提交
220
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
221 222
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
223 224 225
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
226
      EmplaceDeviceContext<XPUDeviceContext>(&device_contexts_, p);
227 228 229 230
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
F
fwenguang 已提交
231 232 233
#endif
    } else if (platform::is_mlu_place(p)) {
#ifdef PADDLE_WITH_MLU
W
Wilber 已提交
234
      EmplaceDeviceContext<MLUDeviceContext>(&device_contexts_, p);
F
fwenguang 已提交
235 236 237 238
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("MLUPlace is not supported. Please "
                                          "re-compile with WITH_MLU option."));
J
jianghaicheng 已提交
239 240 241
#endif
    } else if (platform::is_ipu_place(p)) {
#ifdef PADDLE_WITH_IPU
W
Wilber 已提交
242
      EmplaceDeviceContext<IPUDeviceContext>(&device_contexts_, p);
J
jianghaicheng 已提交
243 244 245 246
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("IPUPlace is not supported. Please "
                                          "re-compile with WITH_IPU option."));
247 248 249
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
W
Wilber 已提交
250
      EmplaceDeviceContext<NPUDeviceContext>(&device_contexts_, p);
251 252 253 254
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
255 256 257
#endif
    } else if (platform::is_npu_pinned_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
W
Wilber 已提交
258
      EmplaceDeviceContext<NPUPinnedDeviceContext>(&device_contexts_, p);
259 260 261 262 263
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPinnedPlace is not supported. Please re-compile with "
          "WITH_ASCEND_CL "
          "option."));
264 265 266 267 268 269 270 271 272
#endif
    } else if (platform::is_custom_place(p)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      EmplaceDeviceContext<CustomDeviceContext>(&device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CustomPlace is not supported. Please re-compile with "
          "WITH_CUSTOM_DEVICE "
          "option."));
D
dzhwinter 已提交
273 274 275 276 277
#endif
    }
  }
}

278 279
CPUDeviceContext::CPUDeviceContext() : phi::CPUContext() {
  phi::CPUContext::Init();
W
Wilber 已提交
280
}
281

282 283
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : phi::CPUContext(place) {
  phi::CPUContext::Init();
W
Wilber 已提交
284
}
285

J
jianghaicheng 已提交
286
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
287
IPUDeviceContext::IPUDeviceContext(IPUPlace place) : place_(place) {}
J
jianghaicheng 已提交
288

W
Wilber 已提交
289
const Place& IPUDeviceContext::GetPlace() const { return place_; }
A
Allen Guo 已提交
290

J
jianghaicheng 已提交
291 292 293 294 295 296 297
void IPUDeviceContext::Wait() const {
  /*! \brief  Wait for all operations completion in the stream. */
}

IPUDeviceContext::~IPUDeviceContext() {}

#endif
298
#ifdef PADDLE_WITH_XPU
299 300
XPUDeviceContext::XPUDeviceContext() : phi::XPUContext() {
  phi::XPUContext::Init();
W
Wilber 已提交
301
}
302

303
XPUDeviceContext::~XPUDeviceContext() {}
304

305 306
XPUDeviceContext::XPUDeviceContext(XPUPlace place) : phi::XPUContext(place) {
  phi::XPUContext::Init();
307
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: "
W
Wilber 已提交
308
                          << static_cast<int>(place.device);
309 310 311
}
#endif

312 313 314 315 316 317 318
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
319
  platform::GetCurrentNPUContext(&context_);
320 321 322 323 324 325 326
  stream_.reset(new stream::NPUStream(place));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}
327

328
void NPUDeviceContext::Wait() const {
329 330
  platform::RecordEvent record_event("NPUDeviceContext/wait",
                                     platform::TracerEventType::UserDefined, 2);
331 332
  VLOG(4) << "NPU context(" << this << ")  Wait";
  stream_->Wait();
333 334 335 336
}

aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

W
Wilber 已提交
337
const Place& NPUDeviceContext::GetPlace() const { return place_; }
338 339

aclrtContext NPUDeviceContext::context() const { return context_; }
340 341 342 343 344 345 346 347 348 349 350 351 352 353

NPUPinnedDeviceContext::NPUPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

NPUPinnedDeviceContext::NPUPinnedDeviceContext(NPUPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* NPUPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

W
Wilber 已提交
354
const Place& NPUPinnedDeviceContext::GetPlace() const { return place_; }
355

356 357 358
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
init  
qijun 已提交
359 360 361 362 363 364 365
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

366
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
367 368 369 370 371
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

372
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
373

374 375 376
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
377
  const cudaDeviceProp& deviceProperties() const override {
378
#endif
Q
init  
qijun 已提交
379 380 381 382
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
383 384 385
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
386 387 388
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
389
    void* retv = buf->ptr();
S
sneaxiy 已提交
390 391 392 393
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
394
    return retv;
Q
init  
qijun 已提交
395 396
  }

S
sneaxiy 已提交
397 398 399 400 401 402
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
403 404 405

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
406
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
Q
init  
qijun 已提交
407 408 409 410 411 412
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
413
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
Q
init  
qijun 已提交
414
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
415
#ifdef PADDLE_WITH_HIP
416
      PADDLE_ENFORCE_GPU_SUCCESS(
417 418
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
419
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
init  
qijun 已提交
420
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
421
#endif
Q
init  
qijun 已提交
422 423 424 425 426
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
427
  CUDAPlace place_;
428 429 430 431
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
432
  const cudaDeviceProp* device_prop_;  // not owned;
433
#endif
Q
qijun 已提交
434
  mutable void* scratch_;
Q
init  
qijun 已提交
435
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
436
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
437
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
438 439
};

440 441 442 443 444 445 446 447 448
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

449 450 451 452 453 454 455 456 457 458 459 460
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
461 462
                         const stream::Priority& priority,
                         const stream::StreamFlag& flag) {
463 464
  place_ = place;
  CUDADeviceGuard guard(place_.device);
465
  stream_.reset(new stream::CUDAStream(place, priority, flag));
466 467 468
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
469
#ifndef PADDLE_WITH_HIP
470 471 472
#if CUDA_VERSION >= 11060
  InitCuBlasLtContext();
#endif
Z
zhangkaihuo 已提交
473
  InitCuSparseContext();
G
Guo Sheng 已提交
474
  InitCuSolverContext();
475
#endif
476 477
}

W
Wilber 已提交
478 479 480 481 482 483
void CUDAContext::SetStream(gpuStream_t stream) {
  if (stream_->raw_stream() != stream) {
    CUDADeviceGuard guard(place_.device);
    DestoryCuDNNContext();
    DestoryCuBlasContext();
#ifndef PADDLE_WITH_HIP
484 485 486
#if CUDA_VERSION >= 11060
    DestoryCuBlasLtContext();
#endif
W
Wilber 已提交
487 488 489 490 491 492 493 494 495
    DestoryCuSolverContext();
#endif

    stream_->SetStream(stream);

    InitEigenContext();
    InitCuBlasContext();
    InitCuDNNContext();
#ifndef PADDLE_WITH_HIP
496 497 498
#if CUDA_VERSION >= 11060
    InitCuBlasLtContext();
#endif
W
Wilber 已提交
499 500 501 502 503
    InitCuSolverContext();
#endif
  }
}

504 505 506 507
CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
508
#ifndef PADDLE_WITH_HIP
509 510 511
#if CUDA_VERSION >= 11060
  InitCuBlasLtContext();
#endif
Z
zhangkaihuo 已提交
512
  DestoryCuSparseContext();
G
Guo Sheng 已提交
513
  DestoryCuSolverContext();
514
#endif
515 516
}

517 518 519 520
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : phi::GPUContext(place) {
  phi::GPUContext::PartialInitWithoutAllocator();
  cuda_stream_.reset(new stream::CUDAStream(phi::GPUContext::stream(), place));
  workspace_.reset(new phi::DnnWorkspaceHandle(
W
Wilber 已提交
521
      memory::allocation::AllocatorFacade::Instance()
522
          .GetAllocator(place, phi::GPUContext::stream())
W
Wilber 已提交
523
          .get()));
524 525
}

W
Wilber 已提交
526
CUDADeviceContext::~CUDADeviceContext() = default;
527

528
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
W
Wilber 已提交
529 530 531
  if (thread_ctx_.count(this)) {
    return context()->EigenDevice().get();
  }
532
  return phi::GPUContext::eigen_device();
S
sneaxiy 已提交
533 534
}

W
Wilber 已提交
535 536 537 538 539
void CUDADeviceContext::Wait() const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->Wait();
    return;
  }
540
  phi::GPUContext::Wait();
541 542
}

543 544 545
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
546
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
547
#endif
W
Wilber 已提交
548 549 550
  if (thread_ctx_.count(this)) {
    return context()->CudnnHandle();
  }
551
  return phi::GPUContext::cudnn_handle();
552
}
553

554 555
#ifdef PADDLE_WITH_HIP
rocblas_handle CUDADeviceContext::cublas_handle() const {
W
Wilber 已提交
556 557 558
  if (thread_ctx_.count(this)) {
    return context()->CublasHandle()->GetCublasHandle();
  }
559
  return phi::GPUContext::cublas_handle();
560 561
}
#else
562
cublasHandle_t CUDADeviceContext::cublas_handle() const {
W
Wilber 已提交
563 564 565
  if (thread_ctx_.count(this)) {
    return context()->CublasHandle()->GetCublasHandle();
  }
566
  return phi::GPUContext::cublas_handle();
567
}
568 569 570 571 572 573 574 575
#if CUDA_VERSION >= 11060
cublasLtHandle_t CUDADeviceContext::cublaslt_handle() const {
  if (thread_ctx_.count(this)) {
    return context()->CublasLtHandle()->GetCublasLtHandle();
  }
  return phi::GPUContext::cublaslt_handle();
}
#endif
Z
zhangkaihuo 已提交
576
cusparseHandle_t CUDADeviceContext::cusparse_handle() const {
W
Wilber 已提交
577 578 579
  if (thread_ctx_.count(this)) {
    return context()->CusparseHandle()->GetCusparseHandle();
  }
580
  return phi::GPUContext::cusparse_handle();
W
Wilber 已提交
581 582 583 584 585
}
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  if (thread_ctx_.count(this)) {
    return context()->CusolverDnHandle();
  }
586
  return phi::GPUContext::cusolver_dn_handle();
Z
zhangkaihuo 已提交
587
}
588
#endif
589

W
Wilber 已提交
590 591 592 593 594 595
void CUDADeviceContext::RecordEvent(
    gpuEvent_t ev, const std::function<void()>& callback) const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->RecordEvent(ev, callback);
    return;
  }
596
  phi::GPUContext::RecordEvent(ev, callback);
W
Wilber 已提交
597 598 599 600 601 602 603 604
}

void CUDADeviceContext::AddStreamCallback(
    const std::function<void()>& callback) const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->AddCallback(callback);
    return;
  }
605
  phi::GPUContext::AddStreamCallback(callback);
W
Wilber 已提交
606 607 608 609 610 611 612
}

void CUDADeviceContext::WaitStreamCallback() const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->WaitCallback();
    return;
  }
613
  phi::GPUContext::WaitStreamCallback();
W
Wilber 已提交
614 615
}

616
phi::DnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
W
Wilber 已提交
617 618
  if (thread_ctx_.count(this)) {
    // return workspace_.get();
619
    return phi::DnnWorkspaceHandle(
W
Wilber 已提交
620
        memory::allocation::AllocatorFacade::Instance()
621
            .GetAllocator(GetPlace(), phi::GPUContext::stream())
W
Wilber 已提交
622 623
            .get());
  }
624
  return phi::GPUContext::cudnn_workspace_handle();
625
}
626

W
Wilber 已提交
627 628 629 630
gpuStream_t CUDADeviceContext::stream() const {
  if (thread_ctx_.count(this)) {
    return context()->RawStream();
  }
631
  return phi::GPUContext::stream();
G
Guo Sheng 已提交
632 633
}

W
Wilber 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
std::shared_ptr<CUDAContext> CUDADeviceContext::context() const {
  if (!thread_ctx_.count(this)) {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "CUDADeviceContext call context() failed, make sure in the "
        "thread_local semantic."));
  }
  return thread_ctx_.at(this);
}

stream::CUDAStream* CUDADeviceContext::GetCudaStream() const {
  return cuda_stream_.get();
}

stream::CUDAStream* CUDADeviceContext::SetCudaStream(
    stream::CUDAStream* new_stream_ptr) {
  auto* old_stream_ptr = cuda_stream_.release();
  cuda_stream_.reset(new_stream_ptr);
  return old_stream_ptr;
}
Q
qijun 已提交
653

C
chengduoZH 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

W
Wilber 已提交
667
const Place& CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
668
#endif
Q
qijun 已提交
669

T
tensor-tang 已提交
670 671
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
672
    : CPUDeviceContext(place), p_blobmap_() {
673
  p_blobmap_.reset(new BlobMap());
674
  p_exec_items_.reset(new ExecShape());
675
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
676 677
}

678
MKLDNNDeviceContextThreadLocals::Body::Body()
679
    : cur_engine(dnnl::engine::kind::cpu, 0), cur_stream(cur_engine) {
680 681 682 683 684 685
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

686 687 688 689 690 691 692 693 694 695 696 697
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
698
  dev_ctx->ResetBlobMap(exec_ptr_);
699 700
}

701 702 703 704 705 706 707 708 709 710
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
711 712
  cur_input_shape_str = input_shape_str;
}
713 714
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
715 716
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
717

718 719
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
720 721 722
  cur_paddle_data_layout = dl;
}

723 724
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
725 726 727
  return cur_paddle_data_layout;
}

728 729 730 731 732 733 734 735 736
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

737
const dnnl::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
738 739 740
  return cur_engine;
}

741
dnnl::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
742 743 744
  return cur_stream;
}

745
void MKLDNNDeviceContext::ResetBlobMap(void* ptr) {
746 747 748
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
749 750 751 752 753 754
    // If no specific executor pointer then clear
    // everything. For executor pointer then clear only
    // objects allocated when using given executor
    if (ptr == nullptr) {
      p_blobmap_->clear();
    } else {
755 756 757 758 759
      // Iterate through all shapes and release
      // for each shape and active executor all entries
      // of this executor
      for (auto& s : *p_exec_items_) {
        for (auto& v : (*s.second)[ptr]) {
760
          (v.first)->erase(v.second);
761 762
        }
        s.second->erase(ptr);
763 764
      }
    }
765 766 767 768 769 770
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

771 772
void MKLDNNDeviceContext::RemoveShapeEntriesWithExecutor(void) const {
  p_exec_items_->erase(p_exec_items_->begin());
773 774
}

775 776
void MKLDNNDeviceContext::LinkEntryWithExecutor(BlobPtr_t<KeyBlob> pblob,
                                                KeyBlob::iterator it) const {
777
  // Take current input shape from TLS
778 779
  // Take current executor addess from TLS
  // and for this executor's items add the one defined with arguments
780 781 782 783 784 785 786 787 788
  auto key_it = p_exec_items_
                    ->insert(std::make_pair(tls().cur_input_shape_str,
                                            std::make_shared<ExecMap>()))
                    .first;
  (*key_it->second)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));

  VLOG(3) << "LinkEntryWithExecutor, shapes: " << p_exec_items_->size()
          << " curr exec size: "
          << (*key_it->second)[tls().get_curr_exec()].size() << "\n";
789 790
}

791 792 793 794
void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
795
}
796

797
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
798
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
799
  BlobMap* pMap = p_blobmap_.get();
800
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
801
  if (map_it == pMap->end()) {
802 803 804
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
805 806 807 808
  }
  return map_it->second->size();
}

809
void MKLDNNDeviceContext::SetBlob(const std::string& name,
810
                                  BlobPtr_t<void> data) const {
811
  BlobMap* pMap = p_blobmap_.get();
812
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
813
  BlobPtr_t<KeyBlob> pBlob = nullptr;
814

815
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
816

817
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
818

819 820
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
821 822 823

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
824
    sBlob = std::make_shared<ShapeBlob>();
825 826
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
827
  } else {
828
    sBlob = map_it->second;
829
  }
T
tensor-tang 已提交
830

831
  // Find KeyBlob for current input shape
832
  auto key_it = sBlob->find(tls().cur_input_shape_str);
833

834
  if (key_it == sBlob->end()) {
835 836
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
837 838
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
839
        sBlob->size() &&
840
        (sBlob->size() >=
841
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
842 843 844 845
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
      RemoveShapeEntriesWithExecutor();
846
    }
847
    pBlob = std::make_shared<KeyBlob>();
848
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
849
  } else {
850
    pBlob = key_it->second;
851 852
  }

853
  // Find Blob via name
854 855 856 857
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    auto el =
        pBlob->insert(std::make_pair(name, data));  //  (*pBlob)[name] = data;
858 859 860
    // Register new element in per executor map
    // to have easily erased when executor terminated
    LinkEntryWithExecutor(pBlob, el.first);
861 862 863
  } else {
    blob_it->second = data;  // set data to existing blob
  }
864
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
865
  // lock will be automatically released when out of scope
866
  return;
T
tensor-tang 已提交
867 868
}

869
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) const {
870 871 872
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
873
      num_entries += (l2.second)->size();
874 875 876 877 878
    }
  }
  return num_entries;
}

879
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
880
    const std::string& name) const {
881
  BlobMap* pMap = p_blobmap_.get();
882
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
883
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
884

885
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
886

887
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
888

889 890
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
891 892 893 894
  // (jczaja): After first iteration of model's execution we
  // should have all elements cached (mostly) so failures are unlikely (less
  // likely for dynamic shapes)
  if (unlikely(map_it == pMap->end())) {
895
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
896 897 898 899 900
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
901
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
902
  if (unlikely(sBlob_it == sBlob->end())) {
903
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
904 905 906 907
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
908 909

  // Find Blob via name
910
  auto key_it = pBlob->find(name);
911

912
  if (unlikely(key_it == pBlob->end())) {
913
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
914 915
    return nullptr;
  }
916

917
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
918 919
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
920 921
}

922 923 924
#endif

#ifdef PADDLE_WITH_CUSTOM_DEVICE
925 926 927
CustomDeviceContext::CustomDeviceContext(CustomPlace place)
    : phi::CustomContext(place) {
  Init();
928
  stream_.reset(new phi::stream::Stream(place, stream()));
929 930 931
}

CustomDeviceContext::~CustomDeviceContext() {}
T
tensor-tang 已提交
932
#endif
Q
qijun 已提交
933
}  // namespace platform
Q
qijun 已提交
934
}  // namespace paddle