device_context.cc 27.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14

15
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
16
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
17
#include "paddle/fluid/platform/cuda_device_guard.h"
18
#endif
19
#include "glog/logging.h"
20
#include "paddle/fluid/platform/profiler.h"
21

22 23 24 25 26
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
27
  if (size == 0) {
28 29
    return Alloc(place, size);
  }
30 31

  if (platform::is_gpu_place(place)) {
32
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
51 52
    return Alloc(place, size);
#else
53 54 55
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
56
#endif
57 58 59
  } else {
    return Alloc(place, size);
  }
60 61 62 63 64
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
65 66 67
namespace paddle {
namespace platform {

68
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
69 70 71
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
72 73 74 75

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
76 77
#endif  // PADDLE_WITH_CUDA

78 79 80 81 82 83 84 85 86 87 88 89 90
DeviceType Place2DeviceType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return platform::DeviceType::CPU;
  } else if (platform::is_gpu_place(place)) {
    return platform::DeviceType::CUDA;
  } else if (platform::is_xpu_place(place)) {
    return platform::DeviceType::XPU;
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported place %s to convert into platform::DeviceType.", place));
  }
}

D
dzhwinter 已提交
91 92
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
93
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
94
  VLOG(4) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
95 96
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
97 98
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
99 100
        "with WITH_GPU, WITH_XPU or WITH_ASCEND_CL option or check that "
        "your train process set the correct device id if you use Executor.",
G
GaoWei8 已提交
101
        place));
D
dzhwinter 已提交
102
  }
103
  return it->second.get().get();
D
dzhwinter 已提交
104 105
}

106 107 108 109 110 111 112 113 114
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
115
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
116
                   }));
C
chengduozh 已提交
117 118
}

D
dzhwinter 已提交
119 120
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
121 122 123 124 125
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
126
  std::set<Place> set;
Y
Yu Yang 已提交
127 128 129 130 131
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
132
#ifdef PADDLE_WITH_MKLDNN
133
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
134
#else
135
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
136
#endif
Y
Yu Yang 已提交
137
    } else if (platform::is_gpu_place(p)) {
138
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
139
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
140
#else
G
GaoWei8 已提交
141 142 143
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
144 145
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
146
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
147 148
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
149
#else
G
GaoWei8 已提交
150
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
151 152
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
153 154 155 156 157 158 159 160
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
161 162 163 164 165 166 167 168
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
      EmplaceDeviceContext<NPUDeviceContext, NPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
169 170 171 172 173 174 175 176 177 178
#endif
    } else if (platform::is_npu_pinned_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
      EmplaceDeviceContext<NPUPinnedDeviceContext, NPUPinnedPlace>(
          &device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPinnedPlace is not supported. Please re-compile with "
          "WITH_ASCEND_CL "
          "option."));
D
dzhwinter 已提交
179 180 181 182 183
#endif
    }
  }
}

184 185 186 187
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
188
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
189 190 191 192 193 194 195
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
196
Place CPUDeviceContext::GetPlace() const { return place_; }
197

198
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
199 200 201 202
XPUDeviceContext::XPUDeviceContext() {
  context_ = xpu::create_context();
  xpu_version_ = get_xpu_version(place_.device);
}
203

204
XPUDeviceContext::~XPUDeviceContext() {}
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
220 221 222

  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: " << place_.device;

223
  context_ = xpu::create_context();
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  const int MAX_XPU_NUM = 16;
  const int l3_size = 13.5 * 1024 * 1024;
  static void* l3ptrs[MAX_XPU_NUM] = {nullptr};

  auto selected_xpus = GetXPUSelectedDevices();
  for (unsigned int i = 0; i < selected_xpus.size(); i++) {
    if (place.device == selected_xpus[i]) {
      if (l3ptrs[place.device] == nullptr) {
        xpu_malloc(static_cast<void**>(&l3ptrs[place.device]), l3_size,
                   XPU_MEM_L3);
      }
      if (l3ptrs[place.device] != nullptr) {
        context_->_l3_mgr.set(l3ptrs[place.device], l3_size);
        VLOG(3) << "xpu place " << place.device << " set l3 size " << l3_size;
      }
      break;
    }
241
  }
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
258
  xpu_wait(context_->xpu_stream);
259 260 261 262 263 264 265
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtGetCurrentContext(&context_));
  stream_.reset(new stream::NPUStream(place));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}
281

282
void NPUDeviceContext::Wait() const {
283 284 285
  platform::RecordEvent record_event("NPUDeviceContext/wait");
  VLOG(4) << "NPU context(" << this << ")  Wait";
  stream_->Wait();
286 287 288 289 290 291 292
}

aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

Place NPUDeviceContext::GetPlace() const { return place_; }

aclrtContext NPUDeviceContext::context() const { return context_; }
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

NPUPinnedDeviceContext::NPUPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

NPUPinnedDeviceContext::NPUPinnedDeviceContext(NPUPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* NPUPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place NPUPinnedDeviceContext::GetPlace() const { return place_; }

309 310 311
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
init  
qijun 已提交
312 313 314 315 316 317 318
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

319
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
320 321 322 323 324
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

325
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
326

327 328 329
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
330
  const cudaDeviceProp& deviceProperties() const override {
331
#endif
Q
init  
qijun 已提交
332 333 334 335
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
336 337 338
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
339 340 341
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
342
    void* retv = buf->ptr();
S
sneaxiy 已提交
343 344 345 346
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
347
    return retv;
Q
init  
qijun 已提交
348 349
  }

S
sneaxiy 已提交
350 351 352 353 354 355
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
356 357 358

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
359
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
Q
init  
qijun 已提交
360 361 362 363 364 365
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
366
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
Q
init  
qijun 已提交
367
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
368 369 370 371
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
372
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
373
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
374
#endif
Q
init  
qijun 已提交
375 376 377 378 379
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
380
  CUDAPlace place_;
381 382 383 384
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
385
  const cudaDeviceProp* device_prop_;  // not owned;
386
#endif
Q
qijun 已提交
387
  mutable void* scratch_;
Q
init  
qijun 已提交
388
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
389
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
390
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
391 392
};

393 394 395 396 397 398 399 400 401
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

402 403 404 405 406 407 408 409 410 411 412 413
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
414
                         const stream::Priority& priority) {
415 416 417 418 419 420
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
421
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
422
  InitCuSolverContext();
423
#endif
424 425 426 427 428 429
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
430
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
431
  DestoryCuSolverContext();
432
#endif
433 434
}

435
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
436
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
437 438 439
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
440
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
441
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
442

C
chengduo 已提交
443 444 445
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

446
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
447 448 449
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
450
                          << ", Driver API Version: " << driver_version_ / 1000
451
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
452 453 454
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
455 456 457 458 459 460 461 462
#ifdef PADDLE_WITH_HIP
  size_t version_major, version_minor, version_patch;
  PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
      &version_major, &version_minor, &version_patch));
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", MIOpen Version: " << version_major << "."
                          << version_minor << "." << version_patch;
#else
463 464 465
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
466
                          << (cudnn_dso_ver % 1000) / 100 << ".";
467
#endif
S
sneaxiy 已提交
468 469
  {
    // Check CUDA/CUDNN version compatiblity
470 471
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
472 473 474
#ifdef PADDLE_WITH_HIP
    auto compile_cuda_version = (HIP_VERSION / 100) * 10 + (HIP_VERSION % 10);
#else
475 476
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
477
#endif
S
sneaxiy 已提交
478 479 480 481 482 483 484 485 486 487 488 489
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
490
  default_ctx_.reset(new CUDAContext(place_));
491 492 493 494
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
495
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
496 497 498 499
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
500 501
}

L
liaogang 已提交
502
Place CUDADeviceContext::GetPlace() const { return place_; }
503

504
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
505

K
Kexin Zhao 已提交
506
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
507
  return compute_capability_;
K
Kexin Zhao 已提交
508 509
}

510
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
511
  return multi_process_ * max_threads_per_mp_;
512 513
}

514 515 516 517 518 519
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

520
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
521
  return context()->EigenDevice().get();
522 523
}

524
bool CUDADeviceContext::tensor_core_available() const {
525
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
526 527
}

528 529 530 531
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

532 533 534
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
535
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
536
#endif
537 538
  return context()->CudnnHandle();
}
539

540 541 542 543 544
#ifdef PADDLE_WITH_HIP
rocblas_handle CUDADeviceContext::cublas_handle() const {
  return context()->CublasHandle()->GetCublasHandle();
}
#else
545 546 547
cublasHandle_t CUDADeviceContext::cublas_handle() const {
  return context()->CublasHandle()->GetCublasHandle();
}
548
#endif
549

S
sneaxiy 已提交
550
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
551
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
552
}
553

554
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
555 556 557
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}
558
#endif
G
Guo Sheng 已提交
559

560
gpuStream_t CUDADeviceContext::stream() const { return context()->RawStream(); }
Q
qijun 已提交
561

C
chengduoZH 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
576
#endif
Q
qijun 已提交
577

T
tensor-tang 已提交
578 579
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
580
    : CPUDeviceContext(place), p_blobmap_() {
581
  p_blobmap_.reset(new BlobMap());
582
  p_exec_items_.reset(new ExecShape());
583
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
584 585
}

586 587
MKLDNNDeviceContextThreadLocals::Body::Body()
    : cur_engine(mkldnn::engine::kind::cpu, 0), cur_stream(cur_engine) {
588 589 590 591 592 593
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

594 595 596 597 598 599 600 601 602 603 604 605
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
606
  dev_ctx->ResetBlobMap(exec_ptr_);
607 608
}

609 610 611 612 613 614 615 616 617 618
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
619 620
  cur_input_shape_str = input_shape_str;
}
621 622
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
623 624
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
625

626 627
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
628 629 630
  cur_paddle_data_layout = dl;
}

631 632
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
633 634 635
  return cur_paddle_data_layout;
}

636 637 638 639 640 641 642 643 644
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

645 646 647 648 649 650 651 652
const mkldnn::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
  return cur_engine;
}

mkldnn::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
  return cur_stream;
}

653
void MKLDNNDeviceContext::ResetBlobMap(void* ptr) {
654 655 656
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
657 658 659 660 661 662
    // If no specific executor pointer then clear
    // everything. For executor pointer then clear only
    // objects allocated when using given executor
    if (ptr == nullptr) {
      p_blobmap_->clear();
    } else {
663 664 665 666 667 668 669 670
      // Iterate through all shapes and release
      // for each shape and active executor all entries
      // of this executor
      for (auto& s : *p_exec_items_) {
        for (auto& v : (*s.second)[ptr]) {
          (v.first)->erase(v.second);
        }
        s.second->erase(ptr);
671 672
      }
    }
673 674 675 676 677 678
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

679 680 681 682
void MKLDNNDeviceContext::RemoveShapeEntriesWithExecutor(void) const {
  p_exec_items_->erase(p_exec_items_->begin());
}

683 684
void MKLDNNDeviceContext::LinkEntryWithExecutor(BlobPtr_t<KeyBlob> pblob,
                                                KeyBlob::iterator it) const {
685
  // Take current input shape from TLS
686 687
  // Take current executor addess from TLS
  // and for this executor's items add the one defined with arguments
688 689 690 691 692 693 694 695 696
  auto key_it = p_exec_items_
                    ->insert(std::make_pair(tls().cur_input_shape_str,
                                            std::make_shared<ExecMap>()))
                    .first;
  (*key_it->second)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));

  VLOG(3) << "LinkEntryWithExecutor, shapes: " << p_exec_items_->size()
          << " curr exec size: "
          << (*key_it->second)[tls().get_curr_exec()].size() << "\n";
697 698
}

699 700 701 702
void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
703
}
704

705
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
706
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
707
  BlobMap* pMap = p_blobmap_.get();
708
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
709
  if (map_it == pMap->end()) {
710 711 712
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
713 714 715 716
  }
  return map_it->second->size();
}

717
void MKLDNNDeviceContext::SetBlob(const std::string& name,
718
                                  BlobPtr_t<void> data) const {
719
  BlobMap* pMap = p_blobmap_.get();
720 721
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
722

723
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
724

725
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
726

727 728
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
729 730 731

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
732
    sBlob = std::make_shared<ShapeBlob>();
733 734
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
735
  } else {
736
    sBlob = map_it->second;
737
  }
T
tensor-tang 已提交
738

739
  // Find KeyBlob for current input shape
740
  auto key_it = sBlob->find(tls().cur_input_shape_str);
741

742
  if (key_it == sBlob->end()) {
743 744
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
745 746
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
747
        sBlob->size() &&
748
        (sBlob->size() >=
749
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
750 751 752
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
753
      RemoveShapeEntriesWithExecutor();
754
    }
755 756
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
757
  } else {
758
    pBlob = key_it->second;
759 760
  }

761 762 763
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
764 765 766 767 768
    auto el =
        pBlob->insert(std::make_pair(name, data));  //  (*pBlob)[name] = data;
    // Register new element in per executor map
    // to have easily erased when executor terminated
    LinkEntryWithExecutor(pBlob, el.first);
769 770 771
  } else {
    blob_it->second = data;  // set data to existing blob
  }
772
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
773
  // lock will be automatically released when out of scope
774
  return;
T
tensor-tang 已提交
775 776
}

777
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) const {
778 779 780 781 782 783 784 785 786
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

787
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
788
    const std::string& name) const {
789
  BlobMap* pMap = p_blobmap_.get();
790 791
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
792

793
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
794

795
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
796

797 798
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
799
  if (map_it == pMap->end()) {
800
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
801 802 803 804 805
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
806
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
807
  if (sBlob_it == sBlob->end()) {
808
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
809 810 811 812
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
813 814 815 816

  // Find Blob via name
  auto key_it = pBlob->find(name);

817
  if (key_it == pBlob->end()) {
818
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
819 820
    return nullptr;
  }
821

822
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
823 824
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
825 826 827
}

#endif
Q
qijun 已提交
828
}  // namespace platform
Q
qijun 已提交
829
}  // namespace paddle