device_context.cc 22.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14

15
#ifdef PADDLE_WITH_CUDA
16
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
17
#include "paddle/fluid/platform/cuda_device_guard.h"
18
#endif
19

20 21
#include "glog/logging.h"

22 23 24 25 26
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
27
  if (size == 0) {
28 29
    return Alloc(place, size);
  }
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
51 52
    return Alloc(place, size);
#else
53 54 55
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
56
#endif
57 58 59
  } else {
    return Alloc(place, size);
  }
60 61 62 63 64
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
65 66 67
namespace paddle {
namespace platform {

68 69 70 71
#ifdef PADDLE_WITH_CUDA
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
72 73 74 75

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
76 77
#endif  // PADDLE_WITH_CUDA

D
dzhwinter 已提交
78 79
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
80
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
81 82
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
83 84
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
85 86
        "with WITH_GPU or WITH_XPU option or check that your train process "
        "hold the "
G
GaoWei8 已提交
87 88
        "correct gpu_id if you use Executor.",
        place));
D
dzhwinter 已提交
89
  }
90
  return it->second.get().get();
D
dzhwinter 已提交
91 92
}

93 94 95 96 97 98 99 100 101
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
102
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
103
                   }));
C
chengduozh 已提交
104 105
}

D
dzhwinter 已提交
106 107
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
108 109 110 111 112
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
113
  std::set<Place> set;
Y
Yu Yang 已提交
114 115 116 117 118
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
119
#ifdef PADDLE_WITH_MKLDNN
120
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
121
#else
122
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
123
#endif
Y
Yu Yang 已提交
124
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
125
#ifdef PADDLE_WITH_CUDA
126
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
127
#else
G
GaoWei8 已提交
128 129 130
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
131 132 133
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
134 135
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
136
#else
G
GaoWei8 已提交
137
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
138 139
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
140 141 142 143 144 145 146 147
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
D
dzhwinter 已提交
148 149 150 151 152
#endif
    }
  }
}

153 154 155 156
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
157
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
158 159 160 161 162 163 164
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
165
Place CPUDeviceContext::GetPlace() const { return place_; }
166

167 168 169
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

170
XPUDeviceContext::~XPUDeviceContext() {}
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
186 187 188

  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: " << place_.device;

189
  context_ = xpu::create_context();
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  const int MAX_XPU_NUM = 16;
  const int l3_size = 13.5 * 1024 * 1024;
  static void* l3ptrs[MAX_XPU_NUM] = {nullptr};

  auto selected_xpus = GetXPUSelectedDevices();
  for (unsigned int i = 0; i < selected_xpus.size(); i++) {
    if (place.device == selected_xpus[i]) {
      if (l3ptrs[place.device] == nullptr) {
        xpu_malloc(static_cast<void**>(&l3ptrs[place.device]), l3_size,
                   XPU_MEM_L3);
      }
      if (l3ptrs[place.device] != nullptr) {
        context_->_l3_mgr.set(l3ptrs[place.device], l3_size);
        VLOG(3) << "xpu place " << place.device << " set l3 size " << l3_size;
      }
      break;
    }
207
  }
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
224
  xpu_wait(context_->xpu_stream);
225 226 227 228 229 230 231
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

232
#ifdef PADDLE_WITH_CUDA
233

Q
init  
qijun 已提交
234 235 236 237 238 239 240
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
241
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
242 243 244 245 246 247 248 249 250 251 252 253
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
254 255 256
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
257 258 259
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
260
    void* retv = buf->ptr();
S
sneaxiy 已提交
261 262 263 264
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
265
    return retv;
Q
init  
qijun 已提交
266 267
  }

S
sneaxiy 已提交
268 269 270 271 272 273
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
274 275 276

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
277 278 279 280
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
281
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
282 283 284
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
285 286 287 288 289 290
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
291
#ifdef _WIN32
Q
init  
qijun 已提交
292 293
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
294 295 296
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
297
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
298
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
299 300 301 302 303 304
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
305
  CUDAPlace place_;
Q
init  
qijun 已提交
306 307
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
308
  mutable void* scratch_;
Q
init  
qijun 已提交
309
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
310
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
311
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
312 313
};

314 315 316 317 318 319 320 321 322
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

323 324 325 326 327 328 329 330 331 332 333 334
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
335
                         const stream::Priority& priority) {
336 337 338 339 340 341
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
G
Guo Sheng 已提交
342
  InitCuSolverContext();
343 344 345 346 347 348
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
G
Guo Sheng 已提交
349
  DestoryCuSolverContext();
350 351
}

352
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
353
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
354 355 356
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
357
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
358
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
359

C
chengduo 已提交
360 361 362
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

363
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
364 365 366
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
367
                          << ", Driver API Version: " << driver_version_ / 1000
368
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
369 370 371
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
372 373 374
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
375
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
376 377 378

  {
    // Check CUDA/CUDNN version compatiblity
379 380 381 382
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
383 384 385 386 387 388 389 390 391 392 393 394
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
395
  default_ctx_.reset(new CUDAContext(place_));
396 397 398 399
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
400 401 402 403 404
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
405 406
}

L
liaogang 已提交
407
Place CUDADeviceContext::GetPlace() const { return place_; }
408

409
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
410

K
Kexin Zhao 已提交
411
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
412
  return compute_capability_;
K
Kexin Zhao 已提交
413 414
}

415
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
416
  return multi_process_ * max_threads_per_mp_;
417 418
}

419 420 421 422 423 424
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

425
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
426
  return context()->EigenDevice().get();
427 428
}

429
bool CUDADeviceContext::tensor_core_available() const {
430
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
431 432
}

433 434 435 436
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

437 438 439
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return context()->CudnnHandle();
}
440

S
sneaxiy 已提交
441
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
442
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
443
}
444

G
Guo Sheng 已提交
445 446 447 448
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}

449 450 451
cudaStream_t CUDADeviceContext::stream() const {
  return context()->RawStream();
}
Q
qijun 已提交
452

C
chengduoZH 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
467
#endif
Q
qijun 已提交
468

T
tensor-tang 已提交
469 470
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
471
    : CPUDeviceContext(place), p_blobmap_() {
472 473
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
474 475
}

476 477
MKLDNNDeviceContextThreadLocals::Body::Body()
    : cur_engine(mkldnn::engine::kind::cpu, 0), cur_stream(cur_engine) {
478 479 480 481 482 483
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
  dev_ctx->ResetBlobMap();
}

499 500 501 502 503 504 505 506 507 508
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
509 510
  cur_input_shape_str = input_shape_str;
}
511 512
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
513 514
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
515

516 517
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
518 519 520
  cur_paddle_data_layout = dl;
}

521 522
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
523 524 525
  return cur_paddle_data_layout;
}

526 527 528 529 530 531 532 533 534
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

535 536 537 538 539 540 541 542
const mkldnn::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
  return cur_engine;
}

mkldnn::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
  return cur_stream;
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
558
}
559

560
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
561
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
562
  BlobMap* pMap = p_blobmap_.get();
563
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
564
  if (map_it == pMap->end()) {
565 566 567
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
568 569 570 571
  }
  return map_it->second->size();
}

572
void MKLDNNDeviceContext::SetBlob(const std::string& name,
573
                                  BlobPtr_t<void> data) const {
574
  BlobMap* pMap = p_blobmap_.get();
575 576
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
577

578
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
579

580
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
581

582 583
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
584 585 586

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
587
    sBlob = std::make_shared<ShapeBlob>();
588 589
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
590
  } else {
591
    sBlob = map_it->second;
592
  }
T
tensor-tang 已提交
593

594
  // Find KeyBlob for current input shape
595
  auto key_it = sBlob->find(tls().cur_input_shape_str);
596

597
  if (key_it == sBlob->end()) {
598 599
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
600 601
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
602
        sBlob->size() &&
603
        (sBlob->size() >=
604
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
605 606 607 608
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
609 610
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
611
  } else {
612
    pBlob = key_it->second;
613 614
  }

615 616 617 618 619 620 621
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
622
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
623
  // lock will be automatically released when out of scope
624
  return;
T
tensor-tang 已提交
625 626
}

627 628 629 630 631 632 633 634 635 636
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) {
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

637
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
638
    const std::string& name) const {
639
  BlobMap* pMap = p_blobmap_.get();
640 641
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
642

643
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
644

645
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
646

647 648
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
649
  if (map_it == pMap->end()) {
650
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
651 652 653 654 655
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
656
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
657
  if (sBlob_it == sBlob->end()) {
658
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
659 660 661 662
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
663 664 665 666

  // Find Blob via name
  auto key_it = pBlob->find(name);

667
  if (key_it == pBlob->end()) {
668
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
669 670
    return nullptr;
  }
671

672
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
673 674
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
675 676 677 678
}

#endif

Q
qijun 已提交
679
}  // namespace platform
Q
qijun 已提交
680
}  // namespace paddle