device_context.cc 16.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
21
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/platform/cuda_device_guard.h"
23
#endif
24

25 26
#include "glog/logging.h"

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
#ifdef PADDLE_WITH_CUDA
  if (size == 0 || !platform::is_gpu_place(place)) {
    return Alloc(place, size);
  }
  auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto& desired_dev_ctx =
      static_cast<const platform::CUDADeviceContext&>(dev_ctx);
  if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
    return Alloc(place, size);
  } else {
    return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
        desired_dev_ctx, size);
  }
#else
  return Alloc(place, size);
#endif
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
54 55 56
namespace paddle {
namespace platform {

D
dzhwinter 已提交
57 58
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
59
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
60 61 62
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
63 64 65 66
        "Place %s is not supported, Please check that your paddle compiles "
        "with WITH_GPU "
        "option or check that your train process hold the correct gpu_id if "
        "you use Executor",
M
minqiyang 已提交
67
        place);
D
dzhwinter 已提交
68
  }
69
  return it->second.get().get();
D
dzhwinter 已提交
70 71
}

72 73 74 75 76 77 78 79 80 81 82
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
83 84
}

D
dzhwinter 已提交
85 86 87
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
88
  std::set<Place> set;
Y
Yu Yang 已提交
89 90 91 92 93
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
94
#ifdef PADDLE_WITH_MKLDNN
95
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
96
#else
97
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
98
#endif
Y
Yu Yang 已提交
99
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
100
#ifdef PADDLE_WITH_CUDA
101
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
102 103
#else
      PADDLE_THROW(
D
dzhwinter 已提交
104
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
105
          "option");
C
chengduoZH 已提交
106 107 108
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
109 110
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
111 112 113 114
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
115 116 117 118 119
#endif
    }
  }
}

120 121 122 123
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
124
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
125 126 127 128 129 130 131
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
132
Place CPUDeviceContext::GetPlace() const { return place_; }
133

134
#ifdef PADDLE_WITH_CUDA
135

Q
init  
qijun 已提交
136 137 138 139 140 141 142
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
143
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
144 145 146 147 148 149 150 151 152 153 154 155
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
156 157 158
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
159 160 161
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
162
    void* retv = buf->ptr();
S
sneaxiy 已提交
163 164 165 166
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
167
    return retv;
Q
init  
qijun 已提交
168 169
  }

S
sneaxiy 已提交
170 171 172 173 174 175
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
189
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
190 191 192 193 194 195
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
196
  CUDAPlace place_;
Q
init  
qijun 已提交
197 198
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
199
  mutable void* scratch_;
Q
init  
qijun 已提交
200
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
201
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
202
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
203 204
};

205 206 207 208 209 210 211 212 213
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

214
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
215
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
216 217 218
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
219
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream_));
Q
init  
qijun 已提交
220 221
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
222
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
223 224 225 226 227 228 229 230 231
  cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH));

  if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
    cublas_tensor_core_handle_.reset(
        new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH));
#endif
  }

C
chengduo 已提交
232 233 234
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

235 236
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
237
                          << ", Driver API Version: " << driver_version_ / 1000
238
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
239 240 241
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
242 243 244
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
245
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
246 247 248

  {
    // Check CUDA/CUDNN version compatiblity
249 250 251 252
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
S
sneaxiy 已提交
268
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
S
sneaxiy 已提交
269 270 271 272 273 274 275 276 277 278
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
279 280 281 282 283 284 285 286
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cudnnCreate(&cudnn_handle_),
          "Failed to create Cudnn handle in DeviceContext");
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cudnnSetStream(cudnn_handle_, stream_),
          "Failed to set stream for Cudnn handle in DeviceContext");
    } else {
      cudnn_handle_ = nullptr;
S
sneaxiy 已提交
287 288 289
    }
  }

S
sneaxiy 已提交
290
  callback_manager_.reset(new StreamCallbackManager(stream_));
291 292 293 294
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
295
  Wait();
S
sneaxiy 已提交
296
  WaitStreamCallback();
297 298
  cublas_handle_.reset();
  cublas_tensor_core_handle_.reset();
299 300
  eigen_stream_.reset();
  eigen_device_.reset();
301 302 303 304 305
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamDestroy(stream_));
  if (cudnn_handle_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_),
                                "Failed to destory Cudnn handle");
  }
Q
qingqing01 已提交
306
#if !defined(_WIN32)
307
  if (nccl_comm_) {
308
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
309
  }
Q
qingqing01 已提交
310
#endif
311 312
}

L
liaogang 已提交
313
Place CUDADeviceContext::GetPlace() const { return place_; }
314

L
liaogang 已提交
315
void CUDADeviceContext::Wait() const {
316 317 318 319 320
  cudaError_t e_sync = cudaStreamSynchronize(stream_);
  if (e_sync != 0) {
    LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync)
               << " errno: " << e_sync;
  }
321

322 323 324 325 326
  cudaError_t e_get = cudaGetLastError();
  if (e_get != 0) {
    LOG(FATAL) << "cudaGetLastError  " << cudaGetErrorString(e_get)
               << " errno: " << e_get;
  }
327 328
}

K
Kexin Zhao 已提交
329
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
330
  return compute_capability_;
K
Kexin Zhao 已提交
331 332
}

333
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
334
  return multi_process_ * max_threads_per_mp_;
335 336
}

337 338 339 340
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

341 342
bool CUDADeviceContext::tensor_core_available() const {
  return cublas_tensor_core_handle_ != nullptr;
S
sneaxiy 已提交
343 344
}

345
cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; }
346

S
sneaxiy 已提交
347
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
348
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
349
}
350

351
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
352

C
chengduoZH 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
367
#endif
Q
qijun 已提交
368

T
tensor-tang 已提交
369 370
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
371 372 373
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
374 375
}

S
Sylwester Fraczek 已提交
376
namespace {
377 378
// Current mkldnn session id.
thread_local size_t cur_mkldnn_session_id = kMKLDNNSessionID_Default;
379 380 381 382
// Current data input shape string.
// - For fixed-shape, it's a null string in default.
// - For dynamic-shape, it's user specific.
thread_local std::string cur_input_shape_str = "";
383 384 385
// the cache capacity of different input shapes for MKLDNN.
// Default 1 means fixed input shape, not dynamic shape.
thread_local int cur_input_shape_cache_capacity = 1;
386
}  // namespace
S
Sylwester Fraczek 已提交
387

388 389
void set_cur_mkldnn_session_id(size_t sid) { cur_mkldnn_session_id = sid; }
size_t get_cur_mkldnn_session_id(void) { return cur_mkldnn_session_id; }
390 391 392
void set_cur_input_shape_str(std::string input_shape_str) {
  cur_input_shape_str = input_shape_str;
}
393 394 395
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity) {
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
396

397 398
void MKLDNNDeviceContext::ResetBlobMap() const { p_blobmap_->clear(); }

399 400 401 402 403 404 405 406 407 408 409
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
  std::lock_guard<std::mutex> lock(*p_mutex_);
  BlobMap* pMap = p_blobmap_.get();
  auto map_it = pMap->find(cur_mkldnn_session_id);
  if (map_it == pMap->end()) {
    LOG(FATAL) << "MKLDNNDeviceContext don't find cur_mkldnn_session_id : "
               << cur_mkldnn_session_id;
  }
  return map_it->second->size();
}

410 411
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
412
  BlobMap* pMap = p_blobmap_.get();
413
  std::shared_ptr<ShapeBlob> sBlob = nullptr;
414 415
  std::shared_ptr<KeyBlob> pBlob = nullptr;

416
  int sid = platform::get_cur_mkldnn_session_id();
T
tensor-tang 已提交
417

418
  std::lock_guard<std::mutex> lock(*p_mutex_);
T
tensor-tang 已提交
419

420 421
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
422 423 424

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
425
    sBlob = std::shared_ptr<ShapeBlob>(new ShapeBlob());
426 427
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
428
  } else {
429
    sBlob = map_it->second;
430
  }
T
tensor-tang 已提交
431

432 433
  // Find KeyBlob for current input shape
  auto key_it = sBlob->find(cur_input_shape_str);
434

435
  if (key_it == sBlob->end()) {
436 437
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
438 439
    if ((static_cast<size_t>(sid) == kMKLDNNSessionID_CacheClearing) &&
        sBlob->size() &&
440 441 442 443 444 445
        (sBlob->size() >=
         static_cast<size_t>(cur_input_shape_cache_capacity))) {
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
446 447
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*sBlob)[cur_input_shape_str] = pBlob;
448
  } else {
449
    pBlob = key_it->second;
450 451
  }

452 453 454 455 456 457 458
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
459
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
460
  // lock will be automatically released when out of scope
461
  return;
T
tensor-tang 已提交
462 463
}

464 465
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
466
  BlobMap* pMap = p_blobmap_.get();
467
  std::shared_ptr<ShapeBlob> sBlob = nullptr;
468
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
469

470
  int sid = platform::get_cur_mkldnn_session_id();
T
tensor-tang 已提交
471

472
  std::lock_guard<std::mutex> lock(*p_mutex_);
473

474 475
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
476
  if (map_it == pMap->end()) {
477
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
478 479 480 481 482 483 484
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
  auto sBlob_it = sBlob->find(cur_input_shape_str);
  if (sBlob_it == sBlob->end()) {
485
    VLOG(2) << "GetBlob: sid=" << cur_input_shape_str
486 487 488 489
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
490 491 492 493

  // Find Blob via name
  auto key_it = pBlob->find(name);

494
  if (key_it == pBlob->end()) {
495
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
496 497
    return nullptr;
  }
498

499
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
500 501
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
502 503 504 505
}

#endif

Q
qijun 已提交
506
}  // namespace platform
Q
qijun 已提交
507
}  // namespace paddle