device_context.cc 17.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
21
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/platform/cuda_device_guard.h"
23
#endif
24

25 26
#include "glog/logging.h"

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
#ifdef PADDLE_WITH_CUDA
  if (size == 0 || !platform::is_gpu_place(place)) {
    return Alloc(place, size);
  }
  auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto& desired_dev_ctx =
      static_cast<const platform::CUDADeviceContext&>(dev_ctx);
  if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
    return Alloc(place, size);
  } else {
    return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
        desired_dev_ctx, size);
  }
#else
  return Alloc(place, size);
#endif
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
54 55 56
namespace paddle {
namespace platform {

D
dzhwinter 已提交
57 58
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
59
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
60 61 62
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
63 64 65 66
        "Place %s is not supported, Please check that your paddle compiles "
        "with WITH_GPU "
        "option or check that your train process hold the correct gpu_id if "
        "you use Executor",
M
minqiyang 已提交
67
        place);
D
dzhwinter 已提交
68
  }
69
  return it->second.get().get();
D
dzhwinter 已提交
70 71
}

72 73 74 75 76 77 78 79 80 81 82
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
83 84
}

D
dzhwinter 已提交
85 86 87
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
88
  std::set<Place> set;
Y
Yu Yang 已提交
89 90 91 92 93
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
94
#ifdef PADDLE_WITH_MKLDNN
95
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
96
#else
97
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
98
#endif
Y
Yu Yang 已提交
99
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
100
#ifdef PADDLE_WITH_CUDA
101
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
102 103
#else
      PADDLE_THROW(
D
dzhwinter 已提交
104
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
105
          "option");
C
chengduoZH 已提交
106 107 108
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
109 110
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
111 112 113 114
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
115 116 117 118 119
#endif
    }
  }
}

120 121 122 123
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
124
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
125 126 127 128 129 130 131
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
132
Place CPUDeviceContext::GetPlace() const { return place_; }
133

134
#ifdef PADDLE_WITH_CUDA
135

Q
init  
qijun 已提交
136 137 138 139 140 141 142
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
143
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
144 145 146 147 148 149 150 151 152 153 154 155
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
156 157 158
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
159 160 161
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
162
    void* retv = buf->ptr();
S
sneaxiy 已提交
163 164 165 166
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
167
    return retv;
Q
init  
qijun 已提交
168 169
  }

S
sneaxiy 已提交
170 171 172 173 174 175
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
189
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
190 191 192 193 194 195
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
196
  CUDAPlace place_;
Q
init  
qijun 已提交
197 198
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
199
  mutable void* scratch_;
Q
init  
qijun 已提交
200
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
201
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
202
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
203 204
};

205 206 207 208 209 210 211 212 213
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

214
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
215
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
216 217 218
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
219
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
220
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
221 222 223 224 225 226 227 228 229 230 231 232
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
  cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH));

  if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
    cublas_tensor_core_handle_.reset(
        new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH));
#endif
  }
233

C
chengduo 已提交
234 235 236
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

237 238
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
239
                          << ", Driver API Version: " << driver_version_ / 1000
240
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
241 242 243
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
244 245 246
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
247
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
248 249 250

  {
    // Check CUDA/CUDNN version compatiblity
251 252 253 254
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
255 256 257 258 259 260 261 262 263 264 265
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cudnnCreate(&cudnn_handle_),
          "Failed to create Cudnn handle in DeviceContext");
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cudnnSetStream(cudnn_handle_, stream_),
          "Failed to set stream for Cudnn handle in DeviceContext");
    } else {
      cudnn_handle_ = nullptr;
    }
S
sneaxiy 已提交
290
  }
291 292

  callback_manager_.reset(new StreamCallbackManager(stream_));
293 294 295 296
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
297
  Wait();
S
sneaxiy 已提交
298
  WaitStreamCallback();
299 300 301 302 303 304 305 306 307 308 309 310 311 312
  cublas_handle_.reset();
  cublas_tensor_core_handle_.reset();
  eigen_stream_.reset();
  eigen_device_.reset();
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamDestroy(stream_));
  if (cudnn_handle_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_),
                                "Failed to destory Cudnn handle");
  }
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
313 314
}

L
liaogang 已提交
315
Place CUDADeviceContext::GetPlace() const { return place_; }
316

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
void CUDADeviceContext::Wait() const {
  cudaError_t e_sync = cudaSuccess;
#if !defined(_WIN32)
  e_sync = cudaStreamSynchronize(stream_);
#else
  while (e_sync = cudaStreamQuery(stream_)) {
    if (e_sync == cudaErrorNotReady) continue;
    break;
  }
#endif

  PADDLE_ENFORCE_CUDA_SUCCESS(
      e_sync, platform::errors::Fatal(
                  "cudaStreamSynchronize raises error: %s, errono: %d",
                  cudaGetErrorString(e_sync), static_cast<int>(e_sync)));
}
333

K
Kexin Zhao 已提交
334
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
335
  return compute_capability_;
K
Kexin Zhao 已提交
336 337
}

338
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
339
  return multi_process_ * max_threads_per_mp_;
340 341
}

342 343 344 345 346 347
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

348
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
349
  return eigen_device_.get();
350 351
}

352
bool CUDADeviceContext::tensor_core_available() const {
353
  return cublas_tensor_core_handle_ != nullptr;
S
sneaxiy 已提交
354 355
}

356 357 358 359
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

360
cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; }
361

S
sneaxiy 已提交
362
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
363
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
364
}
365

366
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
367

C
chengduoZH 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
382
#endif
Q
qijun 已提交
383

T
tensor-tang 已提交
384 385
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
A
Adam 已提交
386 387 388
    : CPUDeviceContext(place),
      engine_(mkldnn::engine::kind::cpu, 0),
      p_blobmap_() {
389 390
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
391 392
}

S
Sylwester Fraczek 已提交
393
namespace {
394 395
// Current mkldnn session id.
thread_local size_t cur_mkldnn_session_id = kMKLDNNSessionID_Default;
396 397 398 399
// Current data input shape string.
// - For fixed-shape, it's a null string in default.
// - For dynamic-shape, it's user specific.
thread_local std::string cur_input_shape_str = "";
400 401 402
// the cache capacity of different input shapes for MKLDNN.
// Default 1 means fixed input shape, not dynamic shape.
thread_local int cur_input_shape_cache_capacity = 1;
403 404 405 406
// Recently registered data_format. This is needed to
// know for converting MKL-DNN Tensor to non MKL-DNN
thread_local paddle::framework::DataLayout cur_paddle_data_layout =
    paddle::framework::DataLayout::kNCHW;
407
}  // namespace
S
Sylwester Fraczek 已提交
408

409 410
void set_cur_mkldnn_session_id(size_t sid) { cur_mkldnn_session_id = sid; }
size_t get_cur_mkldnn_session_id(void) { return cur_mkldnn_session_id; }
411 412 413
void set_cur_input_shape_str(std::string input_shape_str) {
  cur_input_shape_str = input_shape_str;
}
414 415 416
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity) {
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
417

418 419 420 421 422 423 424 425
void set_cur_paddle_data_layout(framework::DataLayout dl) {
  cur_paddle_data_layout = dl;
}

framework::DataLayout get_cur_paddle_data_layout(void) {
  return cur_paddle_data_layout;
}

426 427
void MKLDNNDeviceContext::ResetBlobMap() const { p_blobmap_->clear(); }

428 429 430 431 432 433 434 435 436 437 438
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
  std::lock_guard<std::mutex> lock(*p_mutex_);
  BlobMap* pMap = p_blobmap_.get();
  auto map_it = pMap->find(cur_mkldnn_session_id);
  if (map_it == pMap->end()) {
    LOG(FATAL) << "MKLDNNDeviceContext don't find cur_mkldnn_session_id : "
               << cur_mkldnn_session_id;
  }
  return map_it->second->size();
}

439 440
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
441
  BlobMap* pMap = p_blobmap_.get();
442
  std::shared_ptr<ShapeBlob> sBlob = nullptr;
443 444
  std::shared_ptr<KeyBlob> pBlob = nullptr;

445
  int sid = platform::get_cur_mkldnn_session_id();
T
tensor-tang 已提交
446

447
  std::lock_guard<std::mutex> lock(*p_mutex_);
T
tensor-tang 已提交
448

449 450
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
451 452 453

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
454
    sBlob = std::shared_ptr<ShapeBlob>(new ShapeBlob());
455 456
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
457
  } else {
458
    sBlob = map_it->second;
459
  }
T
tensor-tang 已提交
460

461 462
  // Find KeyBlob for current input shape
  auto key_it = sBlob->find(cur_input_shape_str);
463

464
  if (key_it == sBlob->end()) {
465 466
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
467 468
    if ((static_cast<size_t>(sid) == kMKLDNNSessionID_CacheClearing) &&
        sBlob->size() &&
469 470 471 472 473 474
        (sBlob->size() >=
         static_cast<size_t>(cur_input_shape_cache_capacity))) {
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
475 476
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*sBlob)[cur_input_shape_str] = pBlob;
477
  } else {
478
    pBlob = key_it->second;
479 480
  }

481 482 483 484 485 486 487
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
488
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
489
  // lock will be automatically released when out of scope
490
  return;
T
tensor-tang 已提交
491 492
}

493 494
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
495
  BlobMap* pMap = p_blobmap_.get();
496
  std::shared_ptr<ShapeBlob> sBlob = nullptr;
497
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
498

499
  int sid = platform::get_cur_mkldnn_session_id();
T
tensor-tang 已提交
500

501
  std::lock_guard<std::mutex> lock(*p_mutex_);
502

503 504
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
505
  if (map_it == pMap->end()) {
506
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
507 508 509 510 511 512 513
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
  auto sBlob_it = sBlob->find(cur_input_shape_str);
  if (sBlob_it == sBlob->end()) {
514
    VLOG(2) << "GetBlob: sid=" << cur_input_shape_str
515 516 517 518
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
519 520 521 522

  // Find Blob via name
  auto key_it = pBlob->find(name);

523
  if (key_it == pBlob->end()) {
524
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
525 526
    return nullptr;
  }
527

528
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
529 530
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
531 532 533 534
}

#endif

Q
qijun 已提交
535
}  // namespace platform
Q
qijun 已提交
536
}  // namespace paddle