manipulation.py 110.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15
from __future__ import print_function
16
from collections import Counter
W
Wilber 已提交
17

Z
zhiboniu 已提交
18
from ..static import Variable, device_guard
J
Jiabin Yang 已提交
19
from ..framework import core
H
hong 已提交
20
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _in_eager_without_dygraph_check, _non_static_mode
W
Wilber 已提交
21
from ..fluid.layer_helper import LayerHelper
Z
zhiboniu 已提交
22
from ..framework import OpProtoHolder, convert_np_dtype_to_dtype_, dygraph_only
W
Wilber 已提交
23
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
24
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
25
import numpy as np
26
# TODO: define functions to manipulate a tensor  
27 28 29 30
from ..fluid.layers import cast  # noqa: F401
from ..fluid.layers import slice  # noqa: F401
from ..fluid.layers import transpose  # noqa: F401
from ..fluid.layers import unstack  # noqa: F401
31

32 33
from ..fluid.layers import scatter_nd  # noqa: F401
from ..fluid.layers import shard_index  # noqa: F401
Z
zhiboniu 已提交
34
from ..fluid.layers import crop_tensor as crop  # noqa: F401
35
from ..fluid.layers.nn import _elementwise_op_in_dygraph
L
Leo Chen 已提交
36
from ..fluid import layers
37
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
38
import paddle
W
wanghuancoder 已提交
39
from paddle import _C_ops
40
from paddle.tensor.attribute import _complex_to_real_dtype, _real_to_complex_dtype
41

42 43
__all__ = []

W
Wilber 已提交
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
        x(Tensor): ``x`` is the Tensor we want to filled data inplace
        value(Scale): ``value`` is the value to be filled in x

    Returns:
        x(Tensor): Tensor x filled with value inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
            "The type of 'value'  must be int or float, but received %s." %
            (type(value)))
75 76
    return _C_ops.fill_any_(x, "value_float",
                            float(value), "value_int", int(value))
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
        x(Tensor): ``x`` is the Tensor we want to filled with zero inplace

    Returns:
        x(Tensor): Tensor x filled with zero inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
104
    return _C_ops.fill_any_(x, "value_float", 0., "value_int", int(0))
105 106


107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**
    This function fill the value into the x Tensor's diagonal inplace.
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
    Returns:
        Tensor: Tensor with diagonal filled with value.
    Returns type:
        dtype is same as x Tensor
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_diagonal_')
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
    assert len(inshape) >= 2, ('Tensor dims should >= 2 in fill_diagonal_ API')
    if len(inshape) > 2:
        assert len(inshapeset) == 1, (
            'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
        )
    if len(inshape) == 2:
147 148 149 150
        return _C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                     'wrap', wrap)
    return _C_ops.fill_diagonal_(x, 'value', value, 'offset', offset, 'wrap',
                                 True)
151 152


153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
    assert dim1 < len(inshape) and dim1 >= -len(inshape), (
        'dim1 should between [-rank,rank) in fill_diagonal_tensor_')
    assert dim2 < len(inshape) and dim2 >= -len(inshape), (
        'dim2 should between [-rank,rank) in fill_diagonal_tensor_')
    assert len(inshape) >= 2, (
        'Tensor dims should >= 2 in fill_diagonal_tensor_')
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset))
    predshape.append(diaglen)
    assert tuple(predshape) == tuple(y.shape), (
        "the y shape should be {}".format(predshape))
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
178 179 180 181
        return _C_ops.fill_diagonal_tensor_(x, y, 'dim1', dim1, 'dim2', dim2,
                                            'offset', offset)
    return _C_ops.fill_diagonal_tensor(x, y, 'dim1', dim1, 'dim2', dim2,
                                       'offset', offset)
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
        x(Tensor): ``x`` is the original Tensor
        y(Tensor): ``y`` is the Tensor to filled in x
        dim1(int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2(int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name(str,optional): Name for the operation (optional, default is None)

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Returns type:
        list: dtype is same as x Tensor

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True)


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
        x(Tensor): ``x`` is the original Tensor
        y(Tensor): ``y`` is the Tensor to filled in x
        dim1(int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2(int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name(str,optional): Name for the operation (optional, default is None)

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Returns type:
        list: dtype is same as x Tensor

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False)


Z
zhiboniu 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
@dygraph_only
def tolist(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function translate the paddle.Tensor to python list.

    Args:
        x(Tensor): ``x`` is the Tensor we want to translate to list

    Returns:
        list: A list that contain the same value of current Tensor.

    Returns type:
        list: dtype is same as current Tensor

    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


286 287 288 289 290 291
def concat(x, axis=0, name=None):
    """

    This OP concatenates the input along the axis.

    Args:
292
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
L
liuyuhui 已提交
293
            float32, float64, int32, int64, uint8. All the Tensors in ``x`` must have same data type.
294 295 296 297
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
298 299 300 301 302
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
303
        Tensor: A Tensor with the same data type as ``x``.
304 305 306 307 308 309

    Examples:
        .. code-block:: python
            
            import paddle
            
310 311 312 313 314 315
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
316 317 318
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
319 320 321
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
322 323 324 325 326 327 328 329 330 331 332 333
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
def broadcast_tensors(input, name=None):
    """
    This OP broadcast a list of tensors following broadcast semantics

    .. note::
        If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        input(list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.

        name (str, optional): The default value is None. Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
Z
zhiboniu 已提交
364
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
365
        return _C_ops.broadcast_tensors(input, num_inputs)
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
            "At least 1 tensor is needed to perform broadcast_tensors")

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'broadcast_tensors')
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
                invalid = (output_shape_r[i] != shape[i] and
                           output_shape_r[i] != 1 and shape[i] != 1)
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
404
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
            helper.create_variable_for_type_inference(dtype=helper.input_dtype(
            )))
        i += 1

    inputs = {'X': input}
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out},
        attrs={})

    return out


Y
yaoxuefeng 已提交
429
def flip(x, axis, name=None):
W
Wilber 已提交
430
    """
Y
yaoxuefeng 已提交
431
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
432 433

    Args:
Y
yaoxuefeng 已提交
434
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
435
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
436
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
437 438 439 440
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
441
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
442 443 444 445 446 447

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
448 449 450 451

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
452
          img = paddle.to_tensor(x)
R
Roc 已提交
453 454
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
455

R
Roc 已提交
456 457
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
458
    """
R
Roc 已提交
459 460
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
461 462 463 464

    if in_dygraph_mode():
        return _C_ops.final_state_flip(x, axis)

Z
zhiboniu 已提交
465
    if paddle.in_dynamic_mode():
466
        return _C_ops.flip(x, "axis", axis)
R
Roc 已提交
467

W
Wilber 已提交
468
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
469 470
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
471 472 473
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
474
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
475 476 477 478 479 480 481
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
482
        inputs={"X": x},
W
Wilber 已提交
483
        outputs={"Out": out},
Y
yaoxuefeng 已提交
484
        attrs={"axis": axis})
W
Wilber 已提交
485
    return out
486 487


Z
zmxdream 已提交
488 489
def rot90(x, k=1, axes=[0, 1], name=None):
    """
Z
zmxdream 已提交
490
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
491 492 493

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
494
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
495 496
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
Z
zmxdream 已提交
510 511 512 513
          print(data) 
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
514
          y = paddle.rot90(data, 1, [0, 1])
Z
zmxdream 已提交
515 516 517 518
          print(y) 
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
519
          y= paddle.rot90(data, -1, [0, 1])
Z
zmxdream 已提交
520 521 522 523
          print(y) 
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
524 525
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
Z
zmxdream 已提交
526 527 528 529 530 531
          print(data2) 
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
532
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
533 534 535 536 537
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'rot90')
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
        raise ValueError("expected total rotation axes == 2, but got axes = {}".
                         format(total_rot_dims))
    if input_total_dims < 2:
        raise ValueError("expected total dims >= 2, but got total dims = {}".
                         format(input_total_dims))

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".
            format(axes[0], axes[1]))

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
        raise ValueError("Rotation axis0 out of range, axis0 = {}".format(axes[
            0]))
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
        raise ValueError("Rotation axis1 out of range, axis1 = {}".format(axes[
            1]))

Z
zmxdream 已提交
569
    k %= 4
Z
zmxdream 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
    (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
                                                axes_list[axes[0]])
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


585
def flatten(x, start_axis=0, stop_axis=-1, name=None):
586
    r"""
587 588 589 590
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

591 592 593 594
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, please 
    use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
624
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
625
                      float64, int8, int32, int64, uint8.
626 627 628 629 630 631
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
Y
yaoxuefeng 已提交
632
        Tensor: A tensor with the contents of the input tensor, with input \
633 634 635 636
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
637
        ValueError: If x is not a Tensor.
638 639 640 641 642 643 644 645 646
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
647

Y
yaoxuefeng 已提交
648 649
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
650

651 652
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
653 654 655 656

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
657 658
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
659
        raise ValueError("The input x should be a Tensor")
660

Z
zhiboniu 已提交
661
    if not paddle.in_dynamic_mode():
662
        check_variable_and_dtype(
663 664
            x, 'x',
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
665
            'flatten')
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

683 684 685 686 687
    if in_dygraph_mode():
        dy_out, _ = _C_ops.final_state_flatten(x, start_axis, stop_axis)
        return dy_out

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
688 689
        dy_out, _ = _C_ops.flatten_contiguous_range(x, 'start_axis', start_axis,
                                                    'stop_axis', stop_axis)
690 691
        return dy_out

692
    helper = LayerHelper('flatten', **locals())
693 694 695 696 697 698 699 700 701 702 703 704
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

W
wanghuancoder 已提交
730 731
    dy_out, _ = _C_ops.flatten_contiguous_range_(x, 'start_axis', start_axis,
                                                 'stop_axis', stop_axis)
732 733 734
    return dy_out


Y
yaoxuefeng 已提交
735
def roll(x, shifts, axis=None, name=None):
736
    """
Y
yaoxuefeng 已提交
737 738 739
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
740 741 742
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
743
        x (Tensor): The x tensor as input.
744
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
745 746
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
747 748

    Returns:
Y
yaoxuefeng 已提交
749
        Tensor: A Tensor with same data type as `x`.
750 751 752

    Examples:
        .. code-block:: python
C
Chen Long 已提交
753
            
754 755
            import paddle

756 757 758
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
759
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
760
            print(out_z1)
Y
yaoxuefeng 已提交
761 762 763 764
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
765
            print(out_z2)
Y
yaoxuefeng 已提交
766 767 768
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
769
    """
Y
yaoxuefeng 已提交
770
    origin_shape = x.shape
771 772
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
773 774 775 776
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
777
    if axis is not None:
Y
yaoxuefeng 已提交
778 779 780 781 782
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))
S
sunli 已提交
783 784 785
    else:
        axis = []

F
From00 已提交
786 787 788 789
    if in_dygraph_mode():
        return _C_ops.final_state_roll(x, shifts, axis)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
790
        return _C_ops.roll(x, 'axis', axis, 'shifts', shifts)
791

792 793
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
794

Y
yaoxuefeng 已提交
795
    out = helper.create_variable_for_type_inference(x.dtype)
796

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
    if isinstance(shifts, Variable):
        helper.append_op(
            type='roll',
            inputs={'X': x,
                    "ShiftsTensor": shifts},
            outputs={'Out': out},
            attrs={'axis': axis})
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
        helper.append_op(
            type='roll',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis,
                   'shifts': shifts})
812
    return out
813 814


L
Leo Chen 已提交
815
def stack(x, axis=0, name=None):
816
    """
L
Leo Chen 已提交
817 818 819 820 821 822 823
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
859
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
860 861 862 863 864 865 866 867

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
868
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
869
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
870 871 872 873 874
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
875
    Returns:
L
Leo Chen 已提交
876
        Tensor: The stacked tensor with same data type as input.
877 878 879

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
880

881
            import paddle
882
            
L
Leo Chen 已提交
883 884 885
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Liyulingyue 已提交
886
	    
L
Leo Chen 已提交
887 888
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
889
            print(out)
L
Leo Chen 已提交
890 891 892
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
L
Liyulingyue 已提交
893 894 895 896 897 898 899
	    
	    out = paddle.stack([x1, x2, x3], axis=-2)
	    print(out.shape)  # [1, 3, 2]
	    print(out)
	    # [[[1., 2.],
	    #   [3., 4.],
	    #   [5., 6.]]]
L
Leo Chen 已提交
900 901
    """
    return layers.stack(x, axis, name)
902 903


904
def split(x, num_or_sections, axis=0, name=None):
905 906
    """
    Split the input tensor into multiple sub-Tensors.
907
    
908
    Args:
909 910 911 912 913 914 915 916 917 918 919
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
920
    Returns:
921
        list(Tensor): The list of segmented Tensors.
922
    
923 924
    Example:
        .. code-block:: python
925
            
926 927
            import paddle
            
L
Leo Chen 已提交
928 929
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
930

L
Leo Chen 已提交
931 932 933 934
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
935 936

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
937 938 939
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
940 941

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
942 943 944
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
945
            
L
Leo Chen 已提交
946
            # axis is negative, the real axis is (rank(x) + axis)=1
947
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
948 949 950
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
951
    """
952 953
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
954 955


L
Leo Chen 已提交
956
def squeeze(x, axis=None, name=None):
957
    """
L
Leo Chen 已提交
958
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
959 960 961 962
    
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
963

L
Leo Chen 已提交
964 965 966
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
967 968 969 970 971 972

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
973 974
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
975
          Output:
L
Leo Chen 已提交
976
            out.shape = [3, 5]
977 978 979 980

        Case2:

          Input:
L
Leo Chen 已提交
981 982 983 984 985 986 987 988 989 990
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
991
          Output:
L
Leo Chen 已提交
992
            out.shape = [3, 5]
993

L
Leo Chen 已提交
994
        Case4:
995 996

          Input:
L
Leo Chen 已提交
997 998
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
999
          Output:
L
Leo Chen 已提交
1000
            out.shape = [1, 3, 5]
1001 1002

    Args:
1003
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
1004
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
1005 1006 1007
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
1008 1009 1010
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
1011
        Tensor: Squeezed Tensor with the same data type as input Tensor.
1012 1013 1014

    Examples:
        .. code-block:: python
1015

1016
            import paddle
L
Leo Chen 已提交
1017 1018 1019
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
1020 1021

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
1022
            print(output.shape)  # [5, 10]
1023

1024 1025 1026 1027
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

1028
    """
L
Leo Chen 已提交
1029 1030 1031 1032 1033 1034
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
1035

L
Leo Chen 已提交
1036
    return layers.squeeze(x, axis, name)
1037 1038


1039
@inplace_apis_in_dygraph_only
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

W
wanghuancoder 已提交
1052
    out, _ = _C_ops.squeeze2_(x, 'axes', axis)
1053
    return out
1054 1055


D
duanboqiang 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
def unique_consecutive(x,
                       return_inverse=False,
                       return_counts=False,
                       axis=None,
                       dtype="int64",
                       name=None):
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

    .. note:: This function is different from :func:`paddle.unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
            output = paddle.unique_consecutive(x) # 
            np_output = output.numpy() # [1 2 3 1 2]
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
            np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
            np_counts = inverse.numpy() # [2 2 1 2 1]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
            output = paddle.unique_consecutive(x, axis=0) # 
            np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
            output = paddle.unique_consecutive(x, axis=0) # 
            np_output = output.numpy()
            # [[2 1 3]
            #  [3 0 1]
            #  [2 1 3]]
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhiboniu 已提交
1113
    if paddle.in_dynamic_mode():
1114
        out, inverse, counts = _C_ops.unique_consecutive(
D
duanboqiang 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
            x, 'dtype', attr_dtype, 'return_inverse', return_inverse,
            'return_counts', return_counts, 'axis', axis)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'],
                             'unique_consecutive')
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
    helper.append_op(
        type="unique_consecutive",
        inputs={"X": x},
        attrs=attrs,
        outputs=outputs)
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


Z
Zhang Ting 已提交
1162 1163 1164 1165 1166
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
1167
           dtype="int64",
Z
Zhang Ting 已提交
1168
           name=None):
1169
    r"""
Z
Zhang Ting 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
1181 1182
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
        tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python

            import paddle

1196
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
1197 1198 1199 1200 1201 1202 1203
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

1204
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
1217
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    if _non_static_mode():
        if in_dygraph_mode():
            out, indices, inverse, counts = _C_ops.final_state_unique(
                x, return_index, return_inverse, return_counts, axis,
                attr_dtype)
        if _in_legacy_dygraph():
            out, inverse, indices, counts = _C_ops.unique(
                x, 'dtype', attr_dtype, 'return_index', return_index,
                'return_inverse', return_inverse, 'return_counts',
                return_counts, 'axis', axis, "is_sorted", True)
Z
Zhang Ting 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
1246
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
1247 1248 1249 1250 1251
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
1252
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
1253 1254 1255 1256 1257 1258 1259 1260
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
1261 1262
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
1263
    inverse = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
1264
        dtype=attr_dtype, stop_gradient=True)
1265 1266 1267 1268 1269 1270 1271 1272
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
        "Counts": counts
    }
Z
Zhang Ting 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs)

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


1290
def unsqueeze(x, axis, name=None):
1291
    """
1292 1293 1294
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
1295

1296 1297 1298 1299
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

1300
    Args:
1301 1302 1303 1304 1305 1306
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
1307 1308

    Returns:
1309
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
1310 1311 1312

    Examples:
        .. code-block:: python
1313

1314 1315
            import paddle

1316 1317 1318 1319 1320 1321 1322 1323
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
1324

L
Leo Chen 已提交
1325
            axis = paddle.to_tensor([0, 1, 2])
1326 1327
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
1328 1329 1330 1331 1332 1333

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
1334
            
1335 1336
    """

1337
    return layers.unsqueeze(x, axis, name)
1338 1339


1340
@inplace_apis_in_dygraph_only
1341 1342 1343 1344 1345
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
1346 1347 1348 1349 1350 1351 1352 1353 1354
    if isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, Variable):
        axis = axis.numpy().tolist()
    elif isinstance(axis, (list, tuple)):
        axis = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in axis
        ]
W
wanghuancoder 已提交
1355
    out, _ = _C_ops.unsqueeze2_(x, 'axes', axis)
1356
    return out
1357 1358


1359
def gather(x, index, axis=None, name=None):
1360
    """
1361 1362
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
1363 1364 1365 1366 1367 1368

    .. code-block:: text


                Given:

1369
                x = [[1, 2],
1370 1371 1372
                     [3, 4],
                     [5, 6]]

1373 1374
                index = [1, 2]
                axis=[0]
1375 1376 1377

                Then:

1378
                out = [[3, 4],
1379 1380
                       [5, 6]] 

1381
    Args:
1382
        x (Tensor): The source input tensor with rank>=1. Supported data type is
1383 1384
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
1385
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
1386
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
1387 1388
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1389 1390

    Returns:
1391 1392
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
1393 1394 1395 1396 1397 1398
    Examples:

        .. code-block:: python

            import paddle

1399 1400
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
1401 1402
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
1403
    """
1404 1405
    if axis is None:
        axis = 0
1406

1407 1408 1409
    if in_dygraph_mode():
        return _C_ops.final_state_gather(x, index, axis)
    if _in_legacy_dygraph():
1410
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
W
wanghuancoder 已提交
1411
        return _C_ops.gather(x, index, None, "axis", axis, "overwrite", False)
1412 1413

    check_variable_and_dtype(
1414 1415
        x, 'x',
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
1416 1417
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
1418

1419 1420 1421
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

1422
    helper = LayerHelper('gather', **locals())
1423
    dtype = helper.input_dtype('x')
1424
    out = helper.create_variable_for_type_inference(dtype)
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    if not isinstance(axis, Variable):
        helper.append_op(
            type="gather",
            inputs={"X": x,
                    "Index": index},
            attrs={'axis': axis,
                   'overwrite': False},
            outputs={"Out": out})
    else:
        helper.append_op(
            type="gather",
            inputs={"X": x,
                    "Index": index,
                    "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out})

1442
    return out
myq406450149's avatar
myq406450149 已提交
1443 1444 1445 1446


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
1447

myq406450149's avatar
myq406450149 已提交
1448
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
1449

myq406450149's avatar
myq406450149 已提交
1450
    Args:
1451 1452 1453
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. 
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
1454
    Returns:
1455
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
1456 1457 1458

    Example:
        .. code-block:: python
1459

myq406450149's avatar
myq406450149 已提交
1460
            import paddle
1461
            import numpy as np
myq406450149's avatar
myq406450149 已提交
1462
            # input is a variable which shape is [3, 4, 5]
1463 1464 1465
            np_input = np.random.rand(3, 4, 5).astype('float32')
            input = paddle.to_tensor(np_input)
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
1466 1467 1468
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
1469
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
1470 1471 1472 1473 1474 1475
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
1476 1477 1478
    if in_dygraph_mode():
        return _C_ops.final_state_unbind(input, axis)

myq406450149's avatar
myq406450149 已提交
1479 1480 1481 1482 1483 1484 1485 1486
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
1487
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1488
        return _C_ops.unbind(input, num, 'axis', axis)
1489 1490 1491 1492 1493 1494

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
myq406450149's avatar
myq406450149 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
1505 1506


S
ShenLiang 已提交
1507 1508 1509 1510 1511 1512
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
1513
    
S
ShenLiang 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
S
sunzhongkai588 已提交
1543 1544 1545 1546
            
            If True, use the overwrite mode to update the output of the same index,
	        if False, use the accumulate mode to update the output of the same index.Default value is True.
        
S
ShenLiang 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle

1557 1558 1559
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    if in_dygraph_mode():
        return _C_ops.final_state_scatter(x, index, updates, overwrite)
    else:
        if _in_legacy_dygraph():
            return _C_ops.scatter(x, index, updates, 'overwrite', overwrite)
        else:
            check_variable_and_dtype(
                x, 'dtype',
                ['float32', 'float64', 'float16', 'int32', 'int64'], 'scatter')
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            helper.append_op(
                type="scatter",
                inputs={"X": x,
                        "Ids": index,
                        "Updates": updates},
                attrs={'overwrite': overwrite},
                outputs={"Out": out})
            return out
S
ShenLiang 已提交
1601 1602


1603
@inplace_apis_in_dygraph_only
1604 1605 1606 1607 1608
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
W
wanghuancoder 已提交
1609
    return _C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
1610 1611


1612
def scatter_nd_add(x, index, updates, name=None):
1613
    r"""
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
1656
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            output = paddle.scatter_nd_add(x, index, updates)
    """
    return layers.scatter_nd_add(x, index, updates, name=None)


1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
1698
    
1699 1700 1701 1702 1703 1704 1705 1706
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
1707
            x = paddle.to_tensor(x_np)
1708

1709
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
1727 1728
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
1729 1730

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
1731
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
1732 1733 1734

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
1735
    Args:
L
lilong12 已提交
1736
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
1737
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
1738 1739 1740
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
1741
    Returns:
1742
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
1743

L
lilong12 已提交
1744 1745
    Examples:
        .. code-block:: python
L
lilong12 已提交
1746

L
lilong12 已提交
1747
            import paddle
L
lilong12 已提交
1748

1749
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1750
            out = paddle.tile(data, repeat_times=[2, 1])
1751
            np_out = out.numpy()
1752 1753
            # [[1, 2, 3]
            #  [1, 2, 3]]
L
lilong12 已提交
1754

1755
            out = paddle.tile(data, repeat_times=(2, 2))
1756
            np_out = out.numpy()
1757 1758
            # [[1, 2, 3, 1, 2, 3]
            #  [1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
1759

1760
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
1761
            out = paddle.tile(data, repeat_times=repeat_times)
1762
            np_out = out.numpy()
1763
            # [[1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
1764
    """
H
hong 已提交
1765
    if in_dygraph_mode():
1766 1767 1768 1769 1770
        if isinstance(repeat_times, core.eager.Tensor):
            assert (repeat_times.ndim == 1,
                    "Only support ndim == 1 while repeat_times is a Tensor.")
            repeat_times = repeat_times.numpy().tolist()

H
hong 已提交
1771 1772 1773
        return _C_ops.final_state_tile(x, repeat_times)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1774
        return _C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
        assert len(repeat_times.shape) == 1, (
            'repeat_times must be an 1-D Tensor.')
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1786
                type_tuple = (int, np.int32, np.int64)
1787 1788
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
1789

L
lilong12 已提交
1790 1791
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
L
lilong12 已提交
1792
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
1793 1794
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
1795
            "must set its stop_gradient to be True by "
1796 1797 1798
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
1799

L
lilong12 已提交
1800 1801 1802
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
1803 1804 1805 1806 1807 1808 1809 1810
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
1811
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
1812 1813 1814 1815 1816
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
1817
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
1829 1830


L
lilong12 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
1840
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

1851 1852
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
1853
            out = paddle.expand_as(data_x, data_y)
1854
            np_out = out.numpy()
L
lilong12 已提交
1855 1856
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
1857 1858 1859
    if in_dygraph_mode():
        return _C_ops.final_state_expand_as(x, None, y.shape)

H
hong 已提交
1860
    if _non_static_mode():
W
wanghuancoder 已提交
1861
        return _C_ops.expand_as_v2(x, 'target_shape', y.shape)
1862

L
lilong12 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
1873
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
1874

1875
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
1876 1877
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
1878 1879 1880 1881 1882
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out})
L
lilong12 已提交
1883 1884 1885
    return out


1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
Z
zhiboniu 已提交
1914
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1915
        return _C_ops.expand_v2(x, 'shape', shape)
1916 1917 1918 1919 1920 1921 1922 1923 1924

    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1925
                type_tuple = (int, np.int32, np.int64)
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'broadcast_to')
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input.")

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
                    "All elements in shape of broadcast_to must be positive or -1."
                )
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


1973 1974 1975 1976 1977
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
1978
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
1979 1980 1981


    Args:
L
lilong12 已提交
1982 1983 1984 1985
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
1986 1987 1988
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
1989
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
1990 1991 1992 1993 1994 1995

    Examples:
        .. code-block:: python

            import paddle

1996
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1997
            out = paddle.expand(data, shape=[2, 3])
1998
            print(out)
1999 2000
            # [[1, 2, 3], [1, 2, 3]]
    """
Z
zhiboniu 已提交
2001
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
2002
        return _C_ops.expand_v2(x, 'shape', shape)
2003

2004 2005 2006 2007 2008 2009 2010 2011
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
2012
                type_tuple = (int, np.int32, np.int64)
2013 2014 2015
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

2016
    check_variable_and_dtype(
2017 2018
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand')
2019
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
2020
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
2021 2022
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
2023
                         "some_var.stop_gradient = True, supporting "
2024 2025
                         "some_var as the input.")

2026 2027 2028
    inputs = {"X": [x]}
    attrs = {}

2029
    helper = LayerHelper('expand', **locals())
2030 2031 2032 2033 2034

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
2035
                attrs_expand_shape.append(-2)
2036 2037 2038
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
2039
                    "All elements in shape of expand must be positive or -1.")
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
2056 2057


2058 2059 2060 2061
def reshape(x, shape, name=None):
    """
    This operator changes the shape of ``x`` without changing its data.

2062 2063 2064 2065 2066
    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode. 
    If you want to use the Tensor copy version, please use `Tensor.clone` like 
    ``reshape_clone_x = x.reshape([-1]).clone()``.

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
2097
        x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
        shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

2113 2114
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
2115

2116 2117 2118
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
2119

2120 2121
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
2122
            # the shape of out_2 is [4, 12].
2123

2124
            shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32"))
2125 2126 2127
            out = paddle.reshape(x, shape=shape_tensor)
            print(out)
            # the shape is [8, 6].
2128 2129 2130 2131 2132
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

2133 2134
    """
    return paddle.fluid.layers.reshape(x=x, shape=shape, name=name)
2135 2136


2137
@inplace_apis_in_dygraph_only
2138 2139 2140 2141 2142
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
2143 2144 2145 2146 2147
    if isinstance(shape, (list, tuple)):
        shape = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in shape
        ]
W
wanghuancoder 已提交
2148
        out, _ = _C_ops.reshape2_(x, None, 'shape', shape)
2149 2150 2151
        return out
    elif isinstance(shape, Variable):
        shape.stop_gradient = True
W
wanghuancoder 已提交
2152
        out, _ = _C_ops.reshape2_(x, shape)
2153
        return out
2154 2155


2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
2175 2176 2177 2178 2179 2180 2181
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
2182 2183 2184 2185

            * Case 1:
                index = [[1]]

2186 2187
                gather_nd(x, index)
                         = [x[1, :, :]]
2188 2189 2190 2191 2192 2193 2194
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

2195 2196
                gather_nd(x, index)
                         = [x[0, 2, :]]
2197 2198 2199 2200 2201
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

2202 2203
                gather_nd(x, index)
                         = [x[1, 2, 3]]
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Examples:

        .. code-block:: python
2219
            
2220 2221
            import paddle
            
2222 2223 2224
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
2225 2226 2227 2228 2229 2230
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """

    return paddle.fluid.layers.gather_nd(input=x, index=index, name=name)
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
2279

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
    Args:
        x (Tensor): An N-D ``Tensor``. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].                                
            # example 2:
            # attr starts is a list which contain tensor Tensor.
2311
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
2312 2313 2314 2315 2316 2317
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """

    return paddle.fluid.layers.strided_slice(
        input=x, axes=axes, starts=starts, ends=ends, strides=strides)
F
From00 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439


def tensordot(x, y, axes=2, name=None):
    r"""
    This function computes a contraction, which sum the product of elements from two tensors along the given axes. 

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

            1. It could be a non-negative integer ``n``, 
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
        
            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes. 
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
        
            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``. 
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract. 
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``. 
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
        
            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list 
               and applied the same rules described above to determine the contraction axes. 
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property. 
                             For more information, please refer to :ref:`api_guide_Name` .

    Return: 
        Output (Tensor): The contraction result with the same data type as ``x`` and ``y``. 
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
    
    NOTES:
        1. This function supports tensor broadcast, 
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
        2. This function also supports axes expansion, 
           when the two given axis sequences for ``x`` and ``y`` are of different lengths, 
           the shorter sequence will expand the same axes as the longer one at the end. 
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]], 
           the axis sequence for ``x`` is [0, 1, 2, 3], 
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
  
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.   
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
            #      [28312230., 30496530., 32680830., 34865130.]] 
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
2440
        if paddle.in_dynamic_mode():
F
From00 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
            return tolist(var)
        raise TypeError(
            "The 'axes' with type 'Tensor' in " + op_type +
            " is not available in static graph mode, "
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
            "The 'axes' in " + op_type +
            f" should not be negative, but received axes={axes}.")
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
            assert sx == sy, "The dimensional size for 'x' and 'y' in " + op_type + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
        [not_contraction_size_x, contraction_size])
    y = y.transpose(perm=perm_y).reshape(
        [contraction_size, not_contraction_size_y])
    out = x.matmul(y).reshape(shape_out)
    return out
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555


def as_complex(x, name=None):
    """Transform a real tensor to a complex tensor. 
    
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e. 
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
    
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            print(y.numpy())

            # [[ 0. +1.j  2. +3.j  4. +5.j]
            #  [ 6. +7.j  8. +9.j 10.+11.j]]
    """
Z
zhiboniu 已提交
2556
    if paddle.in_dynamic_mode():
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
        return paddle._C_ops.as_complex(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(x.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
    """Transform a complex tensor to a real tensor. 
    
    The data type of the input tensor is 'complex64' or 'complex128', and the data 
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'float32' or 'float64', with the same precision as the input.
    
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
            print(z.numpy())

            # [[[ 0.  1.]
            #   [ 2.  3.]
            #   [ 4.  5.]]

            #  [[ 6.  7.]
            #   [ 8.  9.]
            #   [10. 11.]]]
    """
Z
zhiboniu 已提交
2605
    if paddle.in_dynamic_mode():
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
        return paddle._C_ops.as_real(x)

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
2617 2618


K
kuizhiqing 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
2628
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
2629 2630 2631 2632 2633 2634 2635
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor with same data type as ``x``.

2636 2637 2638 2639 2640
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

Z
zhiboniu 已提交
2659
    if paddle.in_dynamic_mode():
K
kuizhiqing 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
        if isinstance(repeats, int):
            return _C_ops.repeat_interleave(x, None, 'Repeats', repeats, 'dim',
                                            axis)
        elif isinstance(repeats, Variable):
            return _C_ops.repeat_interleave(x, repeats, 'dim', axis)

    helper = LayerHelper("repeat_interleave", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.manipulation.repeat_interleave')

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0
        })
    return out


2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A new tensor whose axis have been moved.

    Examples:
        .. code-block:: python
        
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
            paddle.moveaxis(x, 0, 1) # equivalent to paddle.t(x)
            # [3, 2]  
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
        dst), "'source' must have the same number with 'destination'"

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
        assert isinstance(axis[0],
                          int), "Each elemment of 'source' must be integer."
        if axis[0] < 0:
            assert axis[
                0] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            src[i] += ndim
        else:
            assert axis[
                0] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)

        assert isinstance(axis[1],
                          int), "Each elemment of 'source' must be integer."
        if axis[1] < 0:
            assert axis[
                1] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            dst[i] += ndim
        else:
            assert axis[
                1] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

Z
zhiboniu 已提交
2766
    if paddle.in_dynamic_mode():
2767 2768 2769
        out, _ = _C_ops.transpose2(x, 'axis', perm)
        return out

2770 2771 2772 2773
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'moveaxis')
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'XShape': [x_shape]},
        attrs={'axis': perm})
    return out
2785 2786


2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
        assert axis < ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
    else:
        assert axis >= -ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
    # This function is used in take/put_along_axis 
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


2812 2813 2814 2815 2816
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
2817
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
2818
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
2819
            and need to broadcast against arr. Supported data type are int and int64.
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
        axis (int) : The axis to take 1d slices along. 

    Returns: 
        Tensor: The indexed element, same dtype with arr
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_np = np.array([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index_np = np.array([[0]])
            x = paddle.to_tensor(x_np)
            index = paddle.to_tensor(index_np)
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
2840 2841 2842 2843 2844 2845 2846 2847
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
2848
    if _non_static_mode():
2849
        indices = paddle.broadcast_to(indices, broadcast_shape)
2850 2851 2852 2853
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
2854 2855
        if not _in_legacy_dygraph():
            return _C_ops.final_state_take_along_axis(arr, indices, axis)
2856 2857 2858 2859 2860 2861
        return _C_ops.take_along_axis(arr, indices, 'Axis', axis)
    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'take_along_axis')
2862
    indices = paddle.broadcast_to(indices, broadcast_shape)
2863 2864 2865 2866
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="take_along_axis",
        inputs={"Input": arr,
                "Index": indices},
        attrs={"Axis": axis},
        outputs={"Result": result})
    return result
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
        axis (int) : The axis to put 1d slices along. 
        reduce (string | optinal) : The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.
    Returns : 
        Tensor: The indexed element, same dtype with arr
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_np = np.array([[10, 30, 20], [60, 40, 50]])
            index_np = np.array([[0]])
            x = paddle.to_tensor(x_np)
            index = paddle.to_tensor(index_np)
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
2910 2911 2912 2913 2914
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
2915
    if _non_static_mode():
2916 2917
        values = paddle.to_tensor(values) if not isinstance(
            values, paddle.Tensor) else values
2918 2919 2920
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
2921 2922 2923
        if in_dygraph_mode():
            return _C_ops.final_state_put_along_axis(arr, indices, values, axis,
                                                     reduce)
2924 2925 2926 2927 2928 2929 2930 2931
        return _C_ops.put_along_axis(arr, indices, values, "Axis", axis,
                                     "Reduce", reduce)

    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'put_along_axis')
2932 2933 2934
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="put_along_axis",
        inputs={"Input": arr,
                "Index": indices,
                "Value": values},
        attrs={"Axis": axis,
               "Reduce": reduce},
        outputs={"Result": result})
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
2952
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
2953 2954
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
2955 2956 2957 2958 2959
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
2960 2961
    values = paddle.to_tensor(values) if not isinstance(
        values, paddle.Tensor) else values
2962 2963 2964
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
2965 2966
    return _C_ops.put_along_axis_(arr, indices, values, "Axis", axis, "Reduce",
                                  reduce)
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980


# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
    'tolist': tolist
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)