post_training_quantization.py 66.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18
import logging
import numpy as np
19
import shutil
20
from inspect import isgeneratorfunction
21 22 23
from .... import io
from .... import core
from .... import framework
24
from .... import unique_name
25
from ....executor import global_scope, Executor
26 27
from ....framework import IrGraph
from ....log_helper import get_logger
28
from .quantization_pass import QuantizationTransformPass, QuantizationTransformPassV2, QuantizationFreezePass, QuantWeightPass, AddQuantDequantPass, AddQuantDequantPassV2
29
from .cal_kl_threshold import cal_kl_threshold
30
from .adaround import run_adaround
31
from . import utils
32

33
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
34 35 36 37 38

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


39 40 41 42 43 44 45 46
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
            attr_values), "Different number of pass attributes and their values."
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


97
class PostTrainingQuantization(object):
98 99 100 101 102 103
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

104
    def __init__(self,
105 106 107
                 executor=None,
                 scope=None,
                 model_dir=None,
108 109
                 model_filename=None,
                 params_filename=None,
110
                 batch_generator=None,
111
                 sample_generator=None,
112
                 data_loader=None,
113 114 115
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
X
XGZhang 已提交
116
                 hist_percent=0.99999,
117
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
118 119
                 round_type='round',
                 learning_rate=0.001,
120
                 is_full_quantize=False,
X
XGZhang 已提交
121
                 bias_correction=False,
122
                 activation_bits=8,
123 124 125
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
126
                 onnx_format=False,
127
                 optimize_model=False,
128
                 is_use_cache_file=False,
129
                 skip_tensor_list=None,
130
                 cache_dir=None):
131
        '''
132
        Constructor.
133 134

        Args:
135
            executor(fluid.Executor): The executor to load, run and save the
136
                quantized model.
137 138
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
139 140 141 142 143 144 145 146 147
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
148 149 150 151 152 153 154 155
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
156 157 158
            data_loader(Python Generator, Paddle.io.DataLoader, optional): The
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time.
159 160 161 162
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
163 164 165 166
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
X
XGZhang 已提交
167 168 169 170 171 172 173
                and max value for quantized activations and weights. If algo='avg',
                get the average value among the max values for activations. If 
                algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
                If algo='mse', get the value which makes the quantization mse loss 
                minimal. Default is KL.
            hist_percent(float, optional): The threshold of algo 'hist' for activations.
                Default is 0.99999.
174 175
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
176
                "mul"].
177 178 179 180
            round_type(str, optional): The method of converting the quantized weights
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the nearest whole number.
            learning_rate(float, optional): The learning rate of adaround method.
181
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
182
                apply quantization to all supported quantizable op type. If set
183 184
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
X
XGZhang 已提交
185 186
            bias_correction(bool, optional): If set as True, use the bias correction
                method of https://arxiv.org/abs/1810.05723. Default is False.
187
            activation_bits(int): quantization bit number for activation.
188 189 190 191 192 193 194 195 196 197 198 199
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
200 201
            onnx_format(bool): Whether to export the quantized model with format of ONNX.
                Default is False.
202
            skip_tensor_list(list): List of skip quant tensor name.
203 204 205 206 207 208 209 210
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
211 212
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
213 214 215
        Returns:
            None

216 217 218 219 220 221
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
222 223 224 225 226 227 228 229 230
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
231
            # sample generator must return a sample every time. The reference
232 233 234
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
235 236 237
            batch_size = 10
            batch_nums = 10
            algo = "KL"
238
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
239 240
            ptq = PostTrainingQuantization(
                        executor=exe,
241 242 243 244
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
245 246 247 248 249 250 251
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
252

253 254 255 256
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
X
XGZhang 已提交
257
        self._support_algo_type = [
258
            'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max'
X
XGZhang 已提交
259
        ]
260 261 262
        assert round_type in ['adaround', 'round']
        self._round_type = round_type
        self._learning_rate = learning_rate
263
        self._dynamic_quantize_op_type = ['lstm']
264
        self._support_quantize_op_type = \
265 266
            list(set(utils._weight_supported_quantizable_op_type +
                utils._act_supported_quantizable_op_type +
267
                self._dynamic_quantize_op_type))
268 269

        # Check inputs
270 271
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
272
        assert any([gen is not None] for gen in [sample_generator,
273 274 275 276 277
            batch_generator, data_loader]), "The sample_generator, batch_generator " \
            "and data_loader cannot be None in the same time."
        if data_loader is not None:
            assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \
                "data_loader only accepts `paddle.io.DataLoader` or Generator instance."
278 279
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
X
XGZhang 已提交
280
            "The algo should be KL, hist, mse, avg, abs_max or min_max."
281 282 283 284 285 286 287 288
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
X
XGZhang 已提交
289
        self._bias_correction = bias_correction
290
        self._executor = executor
291
        self._scope = global_scope() if scope == None else scope
292 293 294
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
295
        self._sample_generator = sample_generator
296
        self._batch_generator = batch_generator
297 298 299
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
X
XGZhang 已提交
300
        self._hist_percent = hist_percent
301 302 303 304
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
305
        self._onnx_format = onnx_format
306
        self._skip_tensor_list = skip_tensor_list
307
        self._is_full_quantize = is_full_quantize
308
        if is_full_quantize:
309
            self._quantizable_op_type = self._support_quantize_op_type
310 311 312
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
313
                assert op_type in self._support_quantize_op_type, \
314
                    op_type + " is not supported for quantization."
315
        self._optimize_model = optimize_model
316

317
        # Define variables
318 319 320 321
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
322
        self._data_loader = data_loader
323

324
        self._out_scale_op_list = utils._out_scale_op_list
325 326
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
327
        self._weight_op_pairs = {}
X
XGZhang 已提交
328
        # The vars for alog = KL or hist
329 330
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
331
        self._sampling_data = {}
X
XGZhang 已提交
332
        self._quantized_var_threshold = {}
333 334
        self._histogram_bins = 2048
        # The vars for algo = min_max
335 336
        self._quantized_var_min = {}
        self._quantized_var_max = {}
X
XGZhang 已提交
337 338 339
        # The vars for algo = avg
        self._quantized_var_avg = {}
        # The best loss of algo = mse
340
        self._best_calibration_loss = {}
X
XGZhang 已提交
341 342
        # The threshold for algo = abs_max, mse or avg
        self._quantized_threshold = {}
343 344 345

    def quantize(self):
        '''
346 347 348
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
349 350 351 352

        Args:
            None
        Returns:
353 354
            the program of quantized model.
        '''
355
        self._load_model_data()
356
        self._collect_target_varnames()
357
        self._set_activation_persistable()
358

X
XGZhang 已提交
359
        if self._algo in ["KL", "hist"]:
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
            _logger.info("Preparation stage ...")
            batch_id = 0
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
                self._collect_activation_abs_min_max()
                if batch_id % 5 == 0:
                    _logger.info("Run batch: " + str(batch_id))
                batch_id += 1
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
            _logger.info("Finish preparation stage, all batch:" + str(batch_id))
            self._init_sampling_act_histogram()

        _logger.info("Sampling stage ...")
378 379 380 381
        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
382
                               fetch_list=self._fetch_list,
383 384
                               return_numpy=False,
                               scope=self._scope)
385
            self._sampling()
386
            if batch_id % 5 == 0:
387
                _logger.info("Run batch: " + str(batch_id))
388 389 390
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
391
        _logger.info("Finish sampling stage, all batch: " + str(batch_id))
392

X
XGZhang 已提交
393 394 395 396 397 398
        if self._algo == 'avg':
            for var_name in self._quantized_act_var_name:
                self._quantized_threshold[var_name] = \
                np.array(self._quantized_var_avg[var_name]).mean()
        if self._algo in ["KL", "hist"]:
            self._calculate_kl_hist_threshold()
399 400 401 402 403 404 405

        if self._round_type == 'adaround':
            self._adaround_apply()

        self._reset_activation_persistable()

        if self._algo is 'min_max':
406
            self._save_input_threhold()
407 408 409 410 411 412
        else:
            self._update_program()

        # save out_threshold for quantized ops.
        if not self._onnx_format:
            self._save_output_threshold()
413

414 415 416 417
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

        # Move sub blocks persistable var to global block
        global_block = self._program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = self._program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)

435 436
        return self._program

437
    def _adaround_apply(self):
438
        assert self._algo != "min_max", "The algo should not be min_max."
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
        else:
            scale_dict = self._quantized_threshold
        run_adaround(
            self._data_loader,
            self._program,
            self._fetch_list,
            self._executor,
            self._scope,
            self._place,
            self._quantized_op_pairs,
            self._weight_op_pairs,
            scale_dict,
            num_iterations=self._batch_nums,
            lr=self._learning_rate)

456 457 458 459
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
460 461 462 463
        '''
        Save the quantized model to the disk.

        Args:
464 465 466 467 468 469 470
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
471
        Returns:
472 473
            None
        '''
474
        clip_extra = True if self._onnx_format else False
475 476
        io.save_inference_model(
            dirname=save_model_path,
477 478
            model_filename=model_filename,
            params_filename=params_filename,
479 480 481
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
482 483
            main_program=self._program,
            clip_extra=clip_extra)
484
        _logger.info("The quantized model is saved in " + save_model_path)
485

486
    def _load_model_data(self):
487
        '''
488
        Load model and set data loader.
489
        '''
490
        _logger.info("Load model and set data loader ...")
491
        [self._program, self._feed_list, self._fetch_list] = \
492 493 494 495
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
496 497 498 499

        if self._optimize_model:
            self._optimize_fp32_model()

500 501
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
502 503 504

        if self._data_loader is not None:
            return
505 506
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
507 508 509 510 511 512 513 514 515 516
        if self._sample_generator is not None:
            self._data_loader.set_sample_generator(
                self._sample_generator,
                batch_size=self._batch_size,
                drop_last=True,
                places=self._place)
        elif self._batch_generator is not None:
            self._data_loader.set_batch_generator(
                self._batch_generator, places=self._place)

517 518 519 520 521 522 523 524
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
525 526
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
527 528 529 530
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

531 532
        self._program = graph.to_program()

533
    def _collect_target_varnames(self):
534 535 536 537
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
538
        # TODO(juncaipeng), consider the name_scope of skip_quant
539
        _logger.info("Collect quantized variable names ...")
540
        self._quantized_op_pairs = {}
541

542
        def collect_var_name(var_name_list, persistable_var_names, op_type):
543 544 545
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
546
                    self._weight_op_pairs[var_name] = op_type
547 548 549
                else:
                    self._quantized_act_var_name.add(var_name)

550
        persistable_var_names = _all_persistable_var_names(self._program)
551 552
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
553 554 555 556 557 558
                # skip quant form self._skip_tensor_list
                if self._skip_tensor_list is not None:
                    for inp_name in utils._get_op_input_var_names(op):
                        if inp_name in self._skip_tensor_list:
                            op._set_attr("op_namescope", "skip_quant")

559 560 561 562 563 564 565 566
                op_type = op.type
                if self._is_full_quantize and \
                    op_type not in self._quantizable_op_type:
                    _logger.warning(op_type +
                                    " is not supported for quantization.")
                # For quantized ops, sample inputs and outputs
                if op_type in self._quantizable_op_type:
                    collect_var_name(
567 568
                        utils._get_op_input_var_names(op),
                        persistable_var_names, op_type)
569
                    collect_var_name(
570 571
                        utils._get_op_output_var_names(op),
                        persistable_var_names, op_type)
572
                    # collect quanted op output var name
573 574
                    for out_var_name in utils._get_op_output_var_names(op):
                        for in_var_name in utils._get_op_input_var_names(op):
575 576 577
                            if in_var_name in persistable_var_names:
                                self._quantized_op_pairs[
                                    in_var_name] = out_var_name
578 579 580
                # For other op, only sample output scale
                elif op_type in self._out_scale_op_list:
                    collect_var_name(
581 582
                        utils._get_op_output_var_names(op),
                        persistable_var_names, op_type)
583 584 585 586 587 588

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
589 590 591 592
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

593 594 595 596
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
597
        to_erase = []
598 599 600
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False
601 602
                to_erase.append(var.name)
        self._scope.erase(to_erase)
603

604
    def _sampling(self):
605
        '''
606
        Sample the min/max, abs_max or histogram in every iterations.
607 608
        '''
        if self._algo == "abs_max":
609
            self._sample_abs_max()
X
XGZhang 已提交
610 611
        elif self._algo == "avg":
            self._sample_avg()
612
        elif self._algo == "min_max":
613
            self._sample_min_max()
X
XGZhang 已提交
614 615
        elif self._algo == "mse":
            self._sample_mse()
616 617
        elif self._algo == "emd":
            self._sample_emd()
X
XGZhang 已提交
618
        elif self._algo in ["KL", "hist"]:
619
            self._sample_histogram()
620

X
XGZhang 已提交
621 622 623
    def _sample_mse(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
624
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
625 626 627 628 629
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
630
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
631 632 633 634 635 636 637 638 639 640
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("MSE searching stage ...")
        for var_name in self._quantized_act_var_name:
641
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
642 643
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
644
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
X
XGZhang 已提交
645
            s = 0.3
646 647
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
X
XGZhang 已提交
648 649 650 651 652 653 654 655
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
                quant_dequant_var = np.round(
                    np.clip(var_tensor, 0.0, scale) / scale *
                    bins) / bins * scale
                mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
656 657 658 659 660 661 662
                if mse_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = mse_loss
                    self._quantized_threshold[var_name] = scale

    def _sample_emd(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
663
                var_tensor = utils.load_variable_data(self._scope, var_name)
664 665 666 667 668
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
669
                            var_name] in utils._channelwise_quant_axis1_ops:
670 671 672 673 674 675 676 677 678 679
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("EMD searching stage ...")
        for var_name in self._quantized_act_var_name:
680
            var_tensor = utils.load_variable_data(self._scope, var_name)
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
            s = 0.3
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
                quant_dequant_var = np.round(
                    np.clip(var_tensor, 0.0, scale) / scale *
                    bins) / bins * scale
                emd_loss = np.abs(
                    np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
                        np.std(var_tensor) - np.std(quant_dequant_var))
                if emd_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = emd_loss
X
XGZhang 已提交
699 700 701 702 703
                    self._quantized_threshold[var_name] = scale

    def _sample_avg(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
704
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
705 706 707 708 709
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
710
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
711 712 713 714 715 716 717 718 719 720
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
721
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
722 723 724 725 726 727 728 729
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_avg):
                self._quantized_var_avg[var_name] = []
            abs_avg_value = float(np.mean(np.max(  \
            np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1))))
            self._quantized_var_avg[var_name].append(abs_avg_value)
            continue

730
    def _sample_abs_max(self):
X
XGZhang 已提交
731
        if self._quantized_threshold == {}:
732
            for var_name in self._quantized_weight_var_name:
733
                var_tensor = utils.load_variable_data(self._scope, var_name)
734 735 736 737
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
738
                    if self._weight_op_pairs[
739
                            var_name] in utils._channelwise_quant_axis1_ops:
740 741 742 743 744 745 746
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
X
XGZhang 已提交
747
                self._quantized_threshold[var_name] = abs_max_value
748 749

        for var_name in self._quantized_act_var_name:
750
            var_tensor = utils.load_variable_data(self._scope, var_name)
751
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
752 753 754
            if (var_name not in self._quantized_threshold) or \
                (abs_max_value > self._quantized_threshold[var_name]):
                self._quantized_threshold[var_name] = abs_max_value
755

756
    def _sample_min_max(self):
757 758
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
759
                var_tensor = utils.load_variable_data(self._scope, var_name)
760 761 762 763 764 765
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
766
                    if self._weight_op_pairs[
767
                            var_name] in utils._channelwise_quant_axis1_ops:
768 769 770 771 772 773 774 775 776 777 778
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
779
            var_tensor = utils.load_variable_data(self._scope, var_name)
780 781 782 783 784 785 786 787
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
788

789 790
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
791
            var_tensor = utils.load_variable_data(self._scope, var_name)
792 793 794 795 796
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

797 798 799 800 801 802
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
803 804 805
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in self._quantizable_op_type:
806
                    for var_name in utils._get_op_input_var_names(op):
807 808 809 810 811 812 813
                        assert var_name in self._quantized_var_min
                        assert var_name in self._quantized_var_max
                        op._set_attr(var_name + ".min",
                                     self._quantized_var_min[var_name])
                        op._set_attr(var_name + ".max",
                                     self._quantized_var_max[var_name])
                        op._set_attr("with_quant_attr", True)
814

815
    def _collect_activation_abs_min_max(self):
816
        '''
817 818
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
819
        '''
820
        for var_name in self._quantized_act_var_name:
821
            var_tensor = utils.load_variable_data(self._scope, var_name)
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
                self._sampling_act_abs_min_max[
                    var_name] = [min_value, max_value]
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
                hist, hist_edeges = np.histogram(
                    [], bins=self._histogram_bins, range=(min_val, max_val))
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
845

X
XGZhang 已提交
846
    def _calculate_kl_hist_threshold(self):
847
        '''
X
XGZhang 已提交
848
        Calculate the KL or hist threshold of quantized variables.
849
        '''
X
XGZhang 已提交
850 851
        _logger.info("Calculate {} threshold ...".format(self._algo))
        assert self._algo in ["KL", "hist"], "The algo should be KL or hist."
852 853

        # Abs_max threshold for weights
854
        for var_name in self._quantized_weight_var_name:
855
            weight_data = utils.load_variable_data(self._scope, var_name)
856
            if self._weight_quantize_type == "abs_max":
857
                weight_threshold = float(np.max(np.abs(weight_data)))
858 859
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
860
                if self._weight_op_pairs[
861
                        var_name] in utils._channelwise_quant_axis1_ops:
862 863 864 865 866 867 868
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
X
XGZhang 已提交
869
            self._quantized_var_threshold[var_name] = weight_threshold
870

871 872
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
X
XGZhang 已提交
873
            if self._algo == "KL":
874
                bin_width = hist_edeges[1] - hist_edeges[0]
X
XGZhang 已提交
875
                self._quantized_var_threshold[var_name] = \
876
                    cal_kl_threshold(hist, bin_width, self._activation_bits)
X
XGZhang 已提交
877 878 879
            elif self._algo == "hist":
                self._quantized_var_threshold[var_name] = \
                    self._get_hist_scaling_factor(hist, hist_edeges)
880 881 882

    def _update_program(self):
        '''
883 884
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
X
XGZhang 已提交
885
        Besides, save all threshold to the scale var node.
886
        '''
887
        _logger.info("Update the program ...")
888 889
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

890
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
891
        major_quantizable_op_types = []
892
        for op_type in utils._weight_supported_quantizable_op_type:
893
            if op_type in self._quantizable_op_type:
894
                major_quantizable_op_types.append(op_type)
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
        if not self._onnx_format:
            transform_pass = QuantizationTransformPass(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)
        else:
            transform_pass = QuantizationTransformPassV2(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)
913 914 915 916 917 918

        for sub_graph in graph.all_sub_graphs():
            # Insert fake_quant/fake_dequantize op must in test graph, so
            # set per graph's _for_test is True.
            sub_graph._for_test = True
            transform_pass.apply(sub_graph)
919 920

        # use AddQuantDequantPass to insert fake_quant_dequant op
921
        minor_quantizable_op_types = []
922
        for op_type in utils._act_supported_quantizable_op_type:
923
            if op_type in self._quantizable_op_type:
924
                minor_quantizable_op_types.append(op_type)
925 926 927 928 929 930 931 932 933 934 935
        if not self._onnx_format:
            add_quant_dequant_pass = AddQuantDequantPass(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types)
        else:
            add_quant_dequant_pass = AddQuantDequantPassV2(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types,
                is_full_quantized=self._is_full_quantize)
936 937 938 939

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            add_quant_dequant_pass.apply(sub_graph)
940

X
XGZhang 已提交
941 942 943
        # save threshold to scale var node
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
944
        else:
X
XGZhang 已提交
945
            scale_dict = self._quantized_threshold
946
        for key, val in scale_dict.items():
947
            utils.set_variable_data(
948 949 950 951
                self._scope,
                self._place,
                key + ".scale",
                np.array(
952
                    [val], dtype=np.float32))
953
            utils.set_variable_data(
954 955 956 957
                self._scope,
                self._place,
                key + ".quant_dequant.scale",
                np.array(
958 959
                    [val], dtype=np.float32))

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
        if not self._onnx_format:
            # apply QuantizationFreezePass, and obtain the final quant model
            freeze_pass = QuantizationFreezePass(
                scope=self._scope,
                place=self._place,
                bias_correction=self._bias_correction,
                weight_bits=self._weight_bits,
                round_type=self._round_type,
                activation_bits=self._activation_bits,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)

            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                freeze_pass.apply(sub_graph)
        else:
            quant_weight_pass = QuantWeightPass(self._scope, self._place)
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                quant_weight_pass.apply(sub_graph)
980

981 982
        self._program = graph.to_program()

983
    def _save_output_threshold(self):
984
        '''
985
        Save output threshold to the quantized op.
986
        '''
987 988 989 990 991 992 993

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
994
            op_node._set_attr("with_quant_attr", True)
995 996 997 998
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
999
            argname_index = utils._get_output_name_index(op_node, out_var_name)
1000 1001
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
1002
            if self._algo == "KL":
1003
                # For compatibility, we save output threshold by two methods.
X
XGZhang 已提交
1004 1005
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_kl")
1006
                save_info(
X
XGZhang 已提交
1007
                    op_node, out_var_name, self._quantized_var_threshold,
1008 1009
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
X
XGZhang 已提交
1010 1011 1012 1013
            elif self._algo == "hist":
                # For compatibility, we save output threshold by two methods.
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_hist")
1014
                save_info(
X
XGZhang 已提交
1015
                    op_node, out_var_name, self._quantized_var_threshold,
1016
                    argname_index[0] + str(argname_index[1]) + "_threshold",
X
XGZhang 已提交
1017 1018
                    "post_hist")

1019
            elif self._algo in ["avg", "abs_max", "mse", "emd"]:
X
XGZhang 已提交
1020 1021 1022 1023 1024 1025
                save_info(op_node, out_var_name, self._quantized_threshold,
                          "out_threshold", "post_" + str(self._algo))
                save_info(
                    op_node, out_var_name, self._quantized_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_" + str(self._algo))
1026 1027 1028 1029 1030 1031
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

1032 1033 1034 1035
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in (
                        self._quantizable_op_type + self._out_scale_op_list):
1036
                    out_var_names = utils._get_op_output_var_names(op)
1037 1038
                    for var_name in out_var_names:
                        analysis_and_save_info(op, var_name)
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
1059
            for var_name in utils._get_op_input_var_names(op):
1060
                if var_name in persistable_var_names:
1061
                    var_data = utils.load_variable_data(self._scope, var_name)
1062
                    threshold = float(np.max(np.abs(var_data)))
1063
                    argname, index = utils._get_input_name_index(op, var_name)
1064 1065 1066
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)
1067
                    op._set_attr("with_quant_attr", True)
1068

X
XGZhang 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    def _get_hist_scaling_factor(self, hist, hist_edges):
        '''
        Using the hist method to get the scaling factor.
        '''
        threshold_rate = self._hist_percent
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edges[1] - hist_edges[0]
        return (hist_index - 0.5) * bin_width

1085 1086 1087

class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
1088
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
1115
                               weight_bits=8,
1116 1117
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
1137 1138
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
1139 1140 1141 1142 1143 1144 1145
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
1146 1147 1148 1149 1150 1151 1152 1153 1154
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
1155
                "Input error:" + op_type + \
1156
                " is not supported for weight quantization."
1157
        assert weight_bits in [8, 16], \
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
            self._quantize_weight_to_int(
                test_model_dir, save_model_filename, save_params_filename,
                quantizable_op_type, weight_bits, weight_quantize_type, True,
                threshold_rate)

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
                save_file_path = os.path.join(
                    os.path.normpath(save_model_dir), new_var.name)
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={
                        'file_path': os.path.normpath(save_file_path),
                        'save_as_fp16': True
                    })

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

            save_path = os.path.join(
                os.path.normpath(save_model_dir), self._params_filename)
            save_block.append_op(
                type='save_combine',
                inputs={'X': save_var_list},
                outputs={'Y': saved_params_var},
                attrs={'file_path': save_path,
                       'save_as_fp16': True})

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1252 1253 1254 1255 1256 1257 1258 1259
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1260 1261 1262 1263 1264 1265 1266 1267 1268
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

        io.save_inference_model(
            dirname=save_model_dir,
            feeded_var_names=feed_list,
            target_vars=fetch_list,
            executor=exe,
            main_program=program,
            model_filename=save_model_filename,
            params_filename=save_params_filename)

1298 1299 1300 1301 1302 1303 1304 1305 1306
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1307
        weight_data = utils.load_variable_data(scope, var_name)
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
1321 1322
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1323 1324 1325
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
1326 1327
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1328 1329 1330 1331 1332

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list
1333
        op._set_attr("with_quant_attr", True)
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

    def _weight_channel_wise_abs_max_quantization(
            self, scope, place, weight_bits, op, var_name, for_test):
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1344
        weight_data = utils.load_variable_data(scope, var_name)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
1358 1359
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
1370 1371
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1372 1373 1374 1375 1376

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)
1377
        op._set_attr("with_quant_attr", True)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
        hist, hist_edeges = np.histogram(
            input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width