post_training_quantization.py 50.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18 19 20 21
import logging
import numpy as np
from .... import io
from .... import core
from .... import framework
22
from ....executor import global_scope, Executor
23 24 25 26 27
from ....framework import IrGraph
from ....log_helper import get_logger
from .quantization_pass import QuantizationTransformPass
from .quantization_pass import QuantizationFreezePass
from .quantization_pass import AddQuantDequantPass
28 29 30
from .quantization_pass import _out_scale_op_list
from .quantization_pass import _get_op_input_var_names
from .quantization_pass import _get_op_output_var_names
31
from .quantization_pass import _get_output_name_index
32

33
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
34 35 36 37 38

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


39 40 41 42
def _load_variable_data(scope, var_name):
    '''
    Load variable value from scope
    '''
43 44 45 46
    var_node = scope.find_var(var_name)
    assert var_node is not None, \
        "Cannot find " + var_name + " in scope."
    return np.array(var_node.get_tensor())
47 48 49 50 51 52 53 54 55 56 57 58 59 60


def _set_variable_data(scope, place, var_name, np_value):
    '''
    Set the value of var node by name, if the node exits,
    '''
    assert isinstance(np_value, np.ndarray), \
        'The type of value should be numpy array.'
    var_node = scope.find_var(var_name)
    if var_node != None:
        tensor = var_node.get_tensor()
        tensor.set(np_value, place)


61 62 63 64 65 66 67 68
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
            attr_values), "Different number of pass attributes and their values."
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


119
class PostTrainingQuantization(object):
120 121 122 123 124 125
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

126
    def __init__(self,
127 128 129
                 executor=None,
                 scope=None,
                 model_dir=None,
130 131
                 model_filename=None,
                 params_filename=None,
132
                 batch_generator=None,
133
                 sample_generator=None,
134 135 136
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
137
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
138
                 is_full_quantize=False,
139
                 activation_bits=8,
140 141 142
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
143
                 optimize_model=False,
144 145
                 is_use_cache_file=False,
                 cache_dir="./temp_post_training"):
146
        '''
147
        Constructor.
148 149

        Args:
150
            executor(fluid.Executor): The executor to load, run and save the
151
                quantized model.
152 153
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
154 155 156 157 158 159 160 161 162
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
163 164 165 166 167 168 169 170
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
171 172 173 174
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
175 176 177 178 179
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
                and max value for quantized activations and weights. Default is KL.
180 181
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
182 183
                "mul"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
184
                apply quantization to all supported quantizable op type. If set
185 186
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
187
            activation_bits(int): quantization bit number for activation.
188 189 190 191 192 193 194 195 196 197 198 199
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
200 201 202 203 204 205 206 207
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
208 209 210 211 212 213 214
            is_use_cache_file(bool, optional): If set is_use_cache_file as False,
                all temp data will be saved in memory. If set is_use_cache_file as True,
                it will save temp data to disk. When the fp32 model is complex or
                the number of calibrate data is large, we should set is_use_cache_file
                as True. Defalut is False.
            cache_dir(str, optional): When is_use_cache_file is True, set cache_dir as
                the directory for saving temp data. Default is ./temp_post_training.
215 216 217
        Returns:
            None

218 219 220 221 222 223
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
224 225 226 227 228 229 230 231 232
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
233
            # sample generator must return a sample every time. The reference
234 235 236
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
237 238 239
            batch_size = 10
            batch_nums = 10
            algo = "KL"
240
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
241 242
            ptq = PostTrainingQuantization(
                        executor=exe,
243 244 245 246
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
247 248 249 250 251 252 253
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
254

255 256 257 258 259 260 261 262 263 264
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
        self._support_algo_type = ['KL', 'abs_max', 'min_max']
        self._support_quantize_op_type = \
            list(set(QuantizationTransformPass._supported_quantizable_op_type +
                AddQuantDequantPass._supported_quantizable_op_type))

        # Check inputs
265 266
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
267 268 269 270 271
        assert any([gen is not None] for gen in [sample_generator,
            batch_generator]), "The sample_generator and batch_generator " \
            "cannot be None in the same time."
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
272
            "The algo should be KL, abs_max or min_max."
273 274 275 276 277 278 279 280
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
281
        self._executor = executor
282
        self._scope = global_scope() if scope == None else scope
283 284 285
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
286
        self._sample_generator = sample_generator
287
        self._batch_generator = batch_generator
288 289 290
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
291 292 293 294 295
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._is_full_quantize = is_full_quantize
296
        if is_full_quantize:
297
            self._quantizable_op_type = self._support_quantize_op_type
298 299 300
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
301
                assert op_type in self._support_quantize_op_type, \
302
                    op_type + " is not supported for quantization."
303
        self._optimize_model = optimize_model
304 305 306 307
        self._is_use_cache_file = is_use_cache_file
        self._cache_dir = cache_dir
        if self._is_use_cache_file and not os.path.exists(self._cache_dir):
            os.mkdir(self._cache_dir)
308

309
        # Define variables
310 311 312 313 314 315
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
        self._data_loader = None

316
        self._out_scale_op_list = _out_scale_op_list
317 318
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
319
        self._sampling_data = {}
320 321 322 323
        self._quantized_var_kl_threshold = {}
        self._quantized_var_min = {}
        self._quantized_var_max = {}
        self._quantized_var_abs_max = {}
324 325 326

    def quantize(self):
        '''
327 328 329
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
330 331 332 333

        Args:
            None
        Returns:
334 335
            the program of quantized model.
        '''
336
        self._load_model_data()
337
        self._collect_target_varnames()
338
        self._set_activation_persistable()
339 340 341 342 343

        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
344 345
                               fetch_list=self._fetch_list,
                               return_numpy=False)
346 347 348 349
            if self._algo == "KL":
                self._sample_data(batch_id)
            else:
                self._sample_threshold()
350

351
            if batch_id % 5 == 0:
352
                _logger.info("Run batch: " + str(batch_id))
353 354 355
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
356
        _logger.info("Finish all batch: " + str(batch_id))
357

358
        self._reset_activation_persistable()
359

360 361
        if self._algo == "KL":
            self._calculate_kl_threshold()
362

363 364 365 366 367 368
        if self._algo in ["KL", "abs_max"]:
            self._update_program()
        else:
            self._save_input_threhold()

        self._save_output_threshold()
369 370
        return self._program

371 372 373 374
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
375 376 377 378
        '''
        Save the quantized model to the disk.

        Args:
379 380 381 382 383 384 385
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
386
        Returns:
387 388 389 390
            None
        '''
        io.save_inference_model(
            dirname=save_model_path,
391 392
            model_filename=model_filename,
            params_filename=params_filename,
393 394 395 396 397
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
            main_program=self._program)

398
    def _load_model_data(self):
399
        '''
400
        Load model and set data loader.
401
        '''
402
        _logger.info("Load model and set data loader ...")
403
        [self._program, self._feed_list, self._fetch_list] = \
404 405 406 407
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
408

409 410 411 412
        if self._program.num_blocks > 1:
            _logger.error("The post training quantization requires that the "
                          "program only has one block.")

413 414 415
        if self._optimize_model:
            self._optimize_fp32_model()

416 417 418 419
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
420 421 422 423 424 425 426 427 428 429
        if self._sample_generator is not None:
            self._data_loader.set_sample_generator(
                self._sample_generator,
                batch_size=self._batch_size,
                drop_last=True,
                places=self._place)
        elif self._batch_generator is not None:
            self._data_loader.set_batch_generator(
                self._batch_generator, places=self._place)

430 431 432 433 434 435 436 437 438 439
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
        self._program = graph.to_program()

440
    def _collect_target_varnames(self):
441 442 443 444
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
445
        # TODO(juncaipeng), consider the name_scope of skip_quant
446
        _logger.info("Collect quantized variable names ...")
447 448 449 450 451 452 453 454

        def collect_var_name(var_name_list, persistable_var_names):
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
                else:
                    self._quantized_act_var_name.add(var_name)

455
        persistable_var_names = _all_persistable_var_names(self._program)
456
        for op in self._program.global_block().ops:
457
            op_type = op.type
458 459 460
            if self._is_full_quantize and \
                op_type not in self._quantizable_op_type:
                _logger.warning(op_type + " is not supported for quantization.")
461
            # For quantized ops, sample inputs and outputs
462
            if op_type in self._quantizable_op_type:
463 464 465 466 467 468 469 470
                collect_var_name(
                    _get_op_input_var_names(op), persistable_var_names)
                collect_var_name(
                    _get_op_output_var_names(op), persistable_var_names)
            # For other op, only sample output scale
            elif op_type in self._out_scale_op_list:
                collect_var_name(
                    _get_op_output_var_names(op), persistable_var_names)
471 472 473 474 475 476

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
477 478 479 480
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

481 482 483 484 485 486 487 488 489 490 491 492 493 494
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False

    def _sample_threshold(self):
        '''
        Sample the input threshold(min, max, or abs_max) in every iterations.
        '''
        assert self._algo in ["abs_max", "min_max"], \
            "The algo should be abs_max or min_max to sample min max value."
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
        if self._algo == "abs_max":
            # Only calculate abs_max value for weight for once
            if self._quantized_var_abs_max == {}:
                for var_name in self._quantized_weight_var_name:
                    var_tensor = _load_variable_data(self._scope, var_name)
                    abs_max_per_channel = []
                    for i in range(var_tensor.shape[0]):
                        abs_max_per_channel.append(
                            float(np.max(np.abs(var_tensor[i]))))
                    self._quantized_var_abs_max[var_name] = abs_max_per_channel
            for var_name in self._quantized_act_var_name:
                var_tensor = _load_variable_data(self._scope, var_name)
                abs_max_value = float(np.max(np.abs(var_tensor)))
                if (var_name not in self._quantized_var_abs_max) or \
                    (abs_max_value > self._quantized_var_abs_max[var_name]):
                    self._quantized_var_abs_max[var_name] = abs_max_value
        elif self._algo == "min_max":
            if self._quantized_var_min == {} and self._quantized_var_max == {}:
                for var_name in self._quantized_weight_var_name:
                    var_tensor = _load_variable_data(self._scope, var_name)
                    min_per_channel = []
                    max_per_channle = []
                    for i in range(var_tensor.shape[0]):
                        min_per_channel.append(float(np.min(var_tensor[i])))
                        max_per_channle.append(float(np.max(var_tensor[i])))
                    self._quantized_var_min[var_name] = min_per_channel
                    self._quantized_var_max[var_name] = max_per_channle
            for var_name in self._quantized_act_var_name:
                var_tensor = _load_variable_data(self._scope, var_name)
                min_value = float(np.min(var_tensor))
                max_value = float(np.max(var_tensor))
                if (var_name not in self._quantized_var_min) or \
                    (min_value < self._quantized_var_min[var_name]):
                    self._quantized_var_min[var_name] = min_value
                if (var_name not in self._quantized_var_max) or \
                    (max_value > self._quantized_var_max[var_name]):
                    self._quantized_var_max[var_name] = max_value

    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
        for op in self._program.global_block().ops:
            if op.type in self._quantizable_op_type:
542 543 544 545 546 547 548
                for var_name in _get_op_input_var_names(op):
                    assert var_name in self._quantized_var_min
                    assert var_name in self._quantized_var_max
                    op._set_attr(var_name + ".min",
                                 self._quantized_var_min[var_name])
                    op._set_attr(var_name + ".max",
                                 self._quantized_var_max[var_name])
549

550
    def _sample_data(self, iter):
551 552 553 554
        '''
        Sample the tensor data of quantized variables, 
        applied in every iteration.
        '''
555
        assert self._algo == "KL", "The algo should be KL to sample data."
556 557
        for var_name in self._quantized_weight_var_name:
            if var_name not in self._sampling_data:
558
                var_tensor = _load_variable_data(self._scope, var_name)
559 560
                self._sampling_data[var_name] = var_tensor

561 562
        if self._is_use_cache_file:
            for var_name in self._quantized_act_var_name:
563
                var_tensor = _load_variable_data(self._scope, var_name)
564
                var_tensor = var_tensor.ravel()
565 566 567
                save_path = os.path.join(
                    self._cache_dir,
                    var_name.replace("/", ".") + "_" + str(iter) + ".npy")
568 569 570 571 572
                np.save(save_path, var_tensor)
        else:
            for var_name in self._quantized_act_var_name:
                if var_name not in self._sampling_data:
                    self._sampling_data[var_name] = []
573
                var_tensor = _load_variable_data(self._scope, var_name)
574 575
                var_tensor = var_tensor.ravel()
                self._sampling_data[var_name].append(var_tensor)
576

577
    def _calculate_kl_threshold(self):
578
        '''
579
        Calculate the KL threshold of quantized variables.
580
        '''
581 582
        _logger.info("Calculate KL threshold ...")
        assert self._algo == "KL", "The algo should be KL to calculate kl threshold."
583 584

        # Abs_max threshold for weights
585
        for var_name in self._quantized_weight_var_name:
586 587 588 589 590 591 592 593 594 595 596 597
            weight_data = self._sampling_data[var_name]
            weight_threshold = None
            if self._weight_quantize_type == "abs_max":
                weight_threshold = np.max(np.abs(weight_data))
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
                for i in range(weight_data.shape[0]):
                    abs_max_value = np.max(np.abs(weight_data[i]))
                    weight_threshold.append(abs_max_value)
            self._quantized_var_kl_threshold[var_name] = weight_threshold

        # KL threshold for activations
598 599 600 601
        if self._is_use_cache_file:
            for var_name in self._quantized_act_var_name:
                sampling_data = []
                filenames = [f for f in os.listdir(self._cache_dir) \
602
                    if re.match(var_name.replace("/", ".")  + '_[0-9]+.npy', f)]
603 604 605 606 607
                for filename in filenames:
                    file_path = os.path.join(self._cache_dir, filename)
                    sampling_data.append(np.load(file_path))
                    os.remove(file_path)
                sampling_data = np.concatenate(sampling_data)
608 609
                self._quantized_var_kl_threshold[var_name] = \
                    self._get_kl_scaling_factor(np.abs(sampling_data))
610 611 612 613
        else:
            for var_name in self._quantized_act_var_name:
                self._sampling_data[var_name] = np.concatenate(
                    self._sampling_data[var_name])
614 615
                self._quantized_var_kl_threshold[var_name] = \
                    self._get_kl_scaling_factor(np.abs(self._sampling_data[var_name]))
616 617 618

    def _update_program(self):
        '''
619 620 621
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
        Besides, save all kl threshold to the scale var node.
622
        '''
623
        _logger.info("Update the program ...")
624 625
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

626
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
627 628
        major_quantizable_op_types = []
        for op_type in QuantizationTransformPass._supported_quantizable_op_type:
629
            if op_type in self._quantizable_op_type:
630
                major_quantizable_op_types.append(op_type)
631 632 633
        transform_pass = QuantizationTransformPass(
            scope=self._scope,
            place=self._place,
634 635 636 637
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            activation_quantize_type=self._activation_quantize_type,
            weight_quantize_type=self._weight_quantize_type,
638
            quantizable_op_type=major_quantizable_op_types)
639 640 641
        transform_pass.apply(graph)

        # use AddQuantDequantPass to insert fake_quant_dequant op
642 643
        minor_quantizable_op_types = []
        for op_type in AddQuantDequantPass._supported_quantizable_op_type:
644
            if op_type in self._quantizable_op_type:
645
                minor_quantizable_op_types.append(op_type)
646 647 648
        add_quant_dequant_pass = AddQuantDequantPass(
            scope=self._scope,
            place=self._place,
649
            quantizable_op_type=minor_quantizable_op_types)
650 651
        add_quant_dequant_pass.apply(graph)

652 653 654 655 656 657
        # save abs_max or KL threshold to scale var node
        if self._algo == "KL":
            scale_dict = self._quantized_var_kl_threshold
        else:
            scale_dict = self._quantized_var_abs_max
        for key, val in scale_dict.items():
658 659 660 661 662
            _set_variable_data(
                self._scope,
                self._place,
                key + ".scale",
                np.array(
663
                    [val], dtype=np.float32))
664 665 666 667 668
            _set_variable_data(
                self._scope,
                self._place,
                key + ".quant_dequant.scale",
                np.array(
669 670 671 672 673 674
                    [val], dtype=np.float32))

        # apply QuantizationFreezePass, and obtain the final quant model
        freeze_pass = QuantizationFreezePass(
            scope=self._scope,
            place=self._place,
675 676 677
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            weight_quantize_type=self._weight_quantize_type,
678
            quantizable_op_type=major_quantizable_op_types)
679 680 681
        freeze_pass.apply(graph)
        self._program = graph.to_program()

682
    def _save_output_threshold(self):
683
        '''
684
        Save output threshold to the quantized op.
685
        '''
686 687 688 689 690 691 692 693 694 695 696

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
697 698 699
            argname_index = _get_output_name_index(op_node, out_var_name)
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
700
            if self._algo == "KL":
701
                # For compatibility, we save output threshold by two methods.
702 703 704
                save_info(op_node, out_var_name,
                          self._quantized_var_kl_threshold, "out_threshold",
                          "post_kl")
705 706 707 708
                save_info(
                    op_node, out_var_name, self._quantized_var_kl_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
709 710 711
            elif self._algo == "abs_max":
                save_info(op_node, out_var_name, self._quantized_var_abs_max,
                          "out_threshold", "post_abs_max")
712 713 714 715
                save_info(
                    op_node, out_var_name, self._quantized_var_abs_max,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
716 717 718 719 720 721
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

722
        for op in self._program.global_block().ops:
723 724 725 726 727 728
            if op.type in (self._quantizable_op_type + self._out_scale_op_list):
                out_var_names = _get_op_output_var_names(op)
                assert len(out_var_names) == 1, "Post training " + \
                    "quantization only support one output for " + op.type
                for var_name in out_var_names:
                    analysis_and_save_info(op, var_name)
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    def _get_kl_scaling_factor(self, activation_blob, num_quantized_bins=255):
        '''
        Using the KL-divergenc method to get the more precise scaling factor.
        '''
        max_val = np.max(activation_blob)
        min_val = np.min(activation_blob)
        if min_val >= 0:
            hist, hist_edeges = np.histogram(
                activation_blob, bins=2048, range=(min_val, max_val))
            ending_iter = 2047
            starting_iter = int(ending_iter * 0.7)
        else:
            _logger.error("Please first apply abs to activation_blob.")
        bin_width = hist_edeges[1] - hist_edeges[0]

        P_sum = len(np.array(activation_blob).ravel())
        min_kl_divergence = 0
        min_kl_index = 0
        kl_inited = False
        for i in range(starting_iter, ending_iter + 1):
            reference_distr_P = hist[0:i].tolist()
            outliers_count = sum(hist[i:2048])
            if reference_distr_P[i - 1] == 0:
                continue
            reference_distr_P[i - 1] += outliers_count
            reference_distr_bins = reference_distr_P[:]
            candidate_distr_Q = hist[0:i].tolist()
            num_merged_bins = int(i / num_quantized_bins)
            candidate_distr_Q_quantized = [0] * num_quantized_bins
            j_start = 0
            j_end = num_merged_bins
            for idx in range(num_quantized_bins):
                candidate_distr_Q_quantized[idx] = sum(candidate_distr_Q[
                    j_start:j_end])
                j_start += num_merged_bins
                j_end += num_merged_bins
                if (idx + 1) == num_quantized_bins - 1:
                    j_end = i
            candidate_distr_Q = self._expand_quantized_bins(
                candidate_distr_Q_quantized, reference_distr_bins)
            Q_sum = sum(candidate_distr_Q)
            kl_divergence = self._safe_entropy(reference_distr_P, P_sum,
                                               candidate_distr_Q, Q_sum)
            if not kl_inited:
                min_kl_divergence = kl_divergence
                min_kl_index = i
                kl_inited = True
            elif kl_divergence < min_kl_divergence:
                min_kl_divergence = kl_divergence
                min_kl_index = i
            else:
                pass
        if min_kl_index == 0:
            while starting_iter > 0:
                if hist[starting_iter] == 0:
                    starting_iter -= 1
                    continue
                else:
                    break
            min_kl_index = starting_iter
        return (min_kl_index + 0.5) * bin_width

    def _expand_quantized_bins(self, quantized_bins, reference_bins):
        '''
        '''
        expanded_quantized_bins = [0] * len(reference_bins)
        num_merged_bins = int(len(reference_bins) / len(quantized_bins))
        j_start = 0
        j_end = num_merged_bins
        for idx in range(len(quantized_bins)):
            zero_count = reference_bins[j_start:j_end].count(0)
            num_merged_bins = j_end - j_start
            if zero_count == num_merged_bins:
                avg_bin_ele = 0
            else:
                avg_bin_ele = quantized_bins[idx] / (
                    num_merged_bins - zero_count + 0.0)
            for idx1 in range(j_start, j_end):
                expanded_quantized_bins[idx1] = (0 if reference_bins[idx1] == 0
                                                 else avg_bin_ele)
            j_start += num_merged_bins
            j_end += num_merged_bins
            if (idx + 1) == len(quantized_bins) - 1:
                j_end = len(reference_bins)
        return expanded_quantized_bins

    def _safe_entropy(self, reference_distr_P, P_sum, candidate_distr_Q, Q_sum):
        '''
        Calculate the entropy.
        '''
        assert len(reference_distr_P) == len(candidate_distr_Q)
        tmp_sum1 = 0
        tmp_sum2 = 0
        for idx in range(len(reference_distr_P)):
            p_idx = reference_distr_P[idx]
            q_idx = candidate_distr_Q[idx]
            if p_idx == 0:
                tmp_sum1 += 0
                tmp_sum2 += 0
            else:
                if q_idx == 0:
831 832
                    _logger.error("Fatal error!, idx = " + str(idx) +
                                  " qindex = 0! p_idx = " + str(p_idx))
833 834 835
                tmp_sum1 += p_idx * (math.log(Q_sum * p_idx))
                tmp_sum2 += p_idx * (math.log(P_sum * q_idx))
        return (tmp_sum1 - tmp_sum2) / P_sum
836 837 838 839


class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
840
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
867
                               weight_bits=8,
868 869
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
889 890
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
891 892 893 894 895 896 897
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
898 899 900 901 902 903 904 905 906
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
907
                "Input error:" + op_type + \
908
                " is not supported for weight quantization."
909
        assert weight_bits in [8, 16], \
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
            self._quantize_weight_to_int(
                test_model_dir, save_model_filename, save_params_filename,
                quantizable_op_type, weight_bits, weight_quantize_type, True,
                threshold_rate)

    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
936 937 938 939 940 941 942 943 944
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
964 965 966 967 968 969 970 971 972 973

        io.save_inference_model(
            dirname=save_model_dir,
            feeded_var_names=feed_list,
            target_vars=fetch_list,
            executor=exe,
            main_program=program,
            model_filename=save_model_filename,
            params_filename=save_params_filename)

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
        weight_data = _load_variable_data(scope, var_name)
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
            _set_variable_data(scope, place, var_name, quantized_weight_data)
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
            _set_variable_data(scope, place, var_name, dequantized_weight_data)

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list

    def _weight_channel_wise_abs_max_quantization(
            self, scope, place, weight_bits, op, var_name, for_test):
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
        weight_data = _load_variable_data(scope, var_name)
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
            _set_variable_data(scope, place, var_name, quantized_weight_data)
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
            _set_variable_data(scope, place, var_name, dequantized_weight_data)

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
        hist, hist_edeges = np.histogram(
            input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width