post_training_quantization.py 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import logging
import numpy as np
from ....executor import global_scope
from .... import io
from .... import core
from .... import framework
from ....framework import IrGraph
from ....log_helper import get_logger
from .quantization_pass import QuantizationTransformPass
from .quantization_pass import QuantizationFreezePass
from .quantization_pass import AddQuantDequantPass

__all__ = ['PostTrainingQuantization']

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class PostTrainingQuantization(object):
    def __init__(self,
                 executor,
                 model_path,
                 data_reader,
                 batch_size=10,
                 batch_nums=None,
                 scope=None,
                 algo="KL",
                 quantizable_op_type=[
                     "conv2d", "depthwise_conv2d", "mul", "pool2d",
                     "elementwise_add"
                 ]):
        '''
        The class utilizes post training quantization methon to quantize the 
        fp32 model. It uses calibrate data to calculate the scale factor of 
        quantized variables, and inserts fake quant/dequant op to obtain the 
        quantized model.

        Args:
            executor(fluid.Executor): The executor to load, run and save the 
                quantized model.
            model_path(str): The path of fp32 model that will be quantized.
            data_reader(Reader): The data reader generates a sample every time,
                and it provides calibrate data for DataLoader.
            batch_size(int, optional): The batch size of DataLoader, default is 10.
            batch_nums(int, optional): If set batch_nums, the number of calibrate 
                data is batch_size*batch_nums. If batch_nums=None, use all data
                provided by data_reader as calibrate data.
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
            algo(str, optional): If algo=KL, use KL-divergenc method to 
                get the more precise scale factor. If algo='direct', use 
                abs_max methon to get the scale factor. Default is KL.
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
                "mul", "pool2d", "elementwise_add"].
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
            model_path = load_fp32_model_path
            save_model_path = save_int8_path
            data_reader =  your_data_reader
            batch_size = 10
            batch_nums = 10
            algo = "KL"
            quantizable_op_type = ["conv2d", \
                "depthwise_conv2d", "mul", "pool2d", "elementwise_add"]
            ptq = PostTrainingQuantization(
                        executor=exe,
                        model_path=model_path,
                        data_reader=data_reader,
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
        self._executor = executor
        self._model_path = model_path
        self._data_reader = data_reader
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._scope = global_scope() if scope == None else scope
        self._quantizable_op_type = quantizable_op_type
        self._algo = algo
        supported_quantizable_op_type = [
            "conv2d", "depthwise_conv2d", "mul", "pool2d", "elementwise_add"
        ]
        for op_type in self._quantizable_op_type:
            assert op_type in supported_quantizable_op_type, \
                op_type + " is not supported for quantization."

        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
        self._data_loader = None

        self._bit_length = 8
        self._quantized_weight_var_name = []
        self._quantized_act_var_name = []
        self._sampling_data = {}
        self._quantized_var_scale_factor = {}

    def quantize(self):
        '''
        Quantize the fp32 model. Use calibrate data to calculate the scale factor of 
        quantized variables, and inserts fake quant/dequant op to obtain the 
        quantized model.
        
        Return:
            the program of quantized model.
        '''
        self._prepare()

        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
                               fetch_list=self._fetch_list)
            self._sample_data()

            if batch_id % 5 == 0:
                _logger.info("run batch: " + str(batch_id))
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
        _logger.info("all run batch: " + str(batch_id))

        self._calculate_scale_factor()
        self._update_program()

        return self._program

    def save_quantized_model(self, save_model_path):
        '''
        Save the quantized model to the disk.

        Args:
            save_model_path(str): The path to save the quantized model
        Return:
            None
        '''
        io.save_inference_model(
            dirname=save_model_path,
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
            main_program=self._program)

    def _prepare(self):
        '''
        Load model and set data loader, collect the variable names for sampling, 
        and set activation variables to be persistable.
        '''
        # load model and set data loader
        [self._program, self._feed_list, self._fetch_list] = \
            io.load_inference_model(self._model_path, self._executor)
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
        self._data_loader.set_sample_generator(
            self._data_reader,
            batch_size=self._batch_size,
            drop_last=True,
            places=self._place)

        #collect the variable names for sampling
        persistable_var_names = []
        for var in self._program.list_vars():
            if var.persistable:
                persistable_var_names.append(var.name)

        block = self._program.global_block()
        for op in block.ops:
            op_type = op.type
            if op_type in self._quantizable_op_type:
                if op_type in ("conv2d", "depthwise_conv2d"):
                    self._quantized_act_var_name.append(op.input("Input")[0])
                    self._quantized_weight_var_name.append(
                        op.input("Filter")[0])
                    self._quantized_act_var_name.append(op.output("Output")[0])
                elif op_type == "mul":
                    x_var_name = op.input("X")[0]
                    y_var_name = op.input("Y")[0]
                    if x_var_name not in persistable_var_names and \
                        y_var_name not in persistable_var_names:
                        op._set_attr("skip_quant", True)
                        _logger.warning("A mul op skip quant for two "
                                        "input variables are not persistable")
                    else:
                        self._quantized_act_var_name.append(x_var_name)
                        self._quantized_weight_var_name.append(y_var_name)
                        self._quantized_act_var_name.append(op.output("Out")[0])
                elif op_type == "pool2d":
                    self._quantized_act_var_name.append(op.input("X")[0])
                elif op_type == "elementwise_add":
                    x_var_name = op.input("X")[0]
                    y_var_name = op.input("Y")[0]
                    if x_var_name not in persistable_var_names and \
                        y_var_name not in persistable_var_names:
                        self._quantized_act_var_name.append(x_var_name)
                        self._quantized_act_var_name.append(y_var_name)

        # set activation variables to be persistable, 
        # so can obtain the tensor data in sample_data stage
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

    def _sample_data(self):
        '''
        Sample the tensor data of quantized variables, 
        applied in every iteration.
        '''
        for var_name in self._quantized_weight_var_name:
            if var_name not in self._sampling_data:
                var_tensor = self._load_var_value(var_name)
                self._sampling_data[var_name] = var_tensor

        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_data:
                self._sampling_data[var_name] = []
            var_tensor = self._load_var_value(var_name)
            self._sampling_data[var_name].append(var_tensor)

    def _calculate_scale_factor(self):
        '''
        Calculate the scale factor of quantized variables.
        '''
        _logger.info("calculate scale factor ...")

        for var_name in self._quantized_weight_var_name:
            data = self._sampling_data[var_name]
            scale_factor_per_channel = []
            for i in range(data.shape[0]):
                abs_max_value = np.max(np.abs(data[i]))
                scale_factor_per_channel.append(abs_max_value)
            self._quantized_var_scale_factor[
                var_name] = scale_factor_per_channel

        for var_name in self._quantized_act_var_name:
            if self._algo == "KL":
                self._quantized_var_scale_factor[var_name] = \
                    self._get_kl_scaling_factor(np.abs(self._sampling_data[var_name]))
            else:
                self._quantized_var_scale_factor[var_name] = \
                    np.max(np.abs(self._sampling_data[var_name]))

    def _update_program(self):
        '''
        Insert fake_quantize/fake_dequantize op to the program.
        '''
        _logger.info("update the program ...")

        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False

        # use QuantizationTransformPass to insert fake_quantize/fake_dequantize op
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

        qtp_quantizable_op_type = []
        for op_type in ["conv2d", "depthwise_conv2d", "mul"]:
            if op_type in self._quantizable_op_type:
                qtp_quantizable_op_type.append(op_type)
        transform_pass = QuantizationTransformPass(
            scope=self._scope,
            place=self._place,
            weight_bits=self._bit_length,
            activation_bits=self._bit_length,
            activation_quantize_type='moving_average_abs_max',
            weight_quantize_type='channel_wise_abs_max',
            quantizable_op_type=qtp_quantizable_op_type)
        transform_pass.apply(graph)

        # use AddQuantDequantPass to insert fake_quant_dequant op
        aqdp_quantizable_op_type = []
        for op_type in ["pool2d", "elementwise_add"]:
            if op_type in self._quantizable_op_type:
                aqdp_quantizable_op_type.append(op_type)
        add_quant_dequant_pass = AddQuantDequantPass(
            scope=self._scope,
            place=self._place,
            quantizable_op_type=aqdp_quantizable_op_type)
        add_quant_dequant_pass.apply(graph)

        # save scale factor to scale var node
        for key, val in self._quantized_var_scale_factor.items():
            self._set_var_node_value(
                key + ".scale", np.array(
                    [val], dtype=np.float32))
            self._set_var_node_value(
                key + ".quant_dequant.scale", np.array(
                    [val], dtype=np.float32))

        # apply QuantizationFreezePass, and obtain the final quant model
        freeze_pass = QuantizationFreezePass(
            scope=self._scope,
            place=self._place,
            weight_bits=self._bit_length,
            activation_bits=self._bit_length,
            weight_quantize_type='channel_wise_abs_max',
            quantizable_op_type=qtp_quantizable_op_type)
        freeze_pass.apply(graph)
        self._program = graph.to_program()

    def _load_var_value(self, var_name):
        '''
        Load variable value from scope
        '''
        return np.array(self._scope.find_var(var_name).get_tensor())

    def _set_var_node_value(self, var_node_name, np_value):
        '''
        Set the value of var node by name, if the node is not exits,
        '''
        assert isinstance(np_value, np.ndarray), \
            'The type of value should be numpy array.'
        var_node = self._scope.find_var(var_node_name)
        if var_node != None:
            tensor = var_node.get_tensor()
            tensor.set(np_value, self._place)

    def _get_kl_scaling_factor(self, activation_blob, num_quantized_bins=255):
        '''
        Using the KL-divergenc method to get the more precise scaling factor.
        '''
        max_val = np.max(activation_blob)
        min_val = np.min(activation_blob)
        if min_val >= 0:
            hist, hist_edeges = np.histogram(
                activation_blob, bins=2048, range=(min_val, max_val))
            ending_iter = 2047
            starting_iter = int(ending_iter * 0.7)
        else:
            _logger.error("Please first apply abs to activation_blob.")
        bin_width = hist_edeges[1] - hist_edeges[0]

        P_sum = len(np.array(activation_blob).ravel())
        min_kl_divergence = 0
        min_kl_index = 0
        kl_inited = False
        for i in range(starting_iter, ending_iter + 1):
            reference_distr_P = hist[0:i].tolist()
            outliers_count = sum(hist[i:2048])
            if reference_distr_P[i - 1] == 0:
                continue
            reference_distr_P[i - 1] += outliers_count
            reference_distr_bins = reference_distr_P[:]
            candidate_distr_Q = hist[0:i].tolist()
            num_merged_bins = int(i / num_quantized_bins)
            candidate_distr_Q_quantized = [0] * num_quantized_bins
            j_start = 0
            j_end = num_merged_bins
            for idx in range(num_quantized_bins):
                candidate_distr_Q_quantized[idx] = sum(candidate_distr_Q[
                    j_start:j_end])
                j_start += num_merged_bins
                j_end += num_merged_bins
                if (idx + 1) == num_quantized_bins - 1:
                    j_end = i
            candidate_distr_Q = self._expand_quantized_bins(
                candidate_distr_Q_quantized, reference_distr_bins)
            Q_sum = sum(candidate_distr_Q)
            kl_divergence = self._safe_entropy(reference_distr_P, P_sum,
                                               candidate_distr_Q, Q_sum)
            if not kl_inited:
                min_kl_divergence = kl_divergence
                min_kl_index = i
                kl_inited = True
            elif kl_divergence < min_kl_divergence:
                min_kl_divergence = kl_divergence
                min_kl_index = i
            else:
                pass
        if min_kl_index == 0:
            while starting_iter > 0:
                if hist[starting_iter] == 0:
                    starting_iter -= 1
                    continue
                else:
                    break
            min_kl_index = starting_iter
        return (min_kl_index + 0.5) * bin_width

    def _expand_quantized_bins(self, quantized_bins, reference_bins):
        '''
        '''
        expanded_quantized_bins = [0] * len(reference_bins)
        num_merged_bins = int(len(reference_bins) / len(quantized_bins))
        j_start = 0
        j_end = num_merged_bins
        for idx in range(len(quantized_bins)):
            zero_count = reference_bins[j_start:j_end].count(0)
            num_merged_bins = j_end - j_start
            if zero_count == num_merged_bins:
                avg_bin_ele = 0
            else:
                avg_bin_ele = quantized_bins[idx] / (
                    num_merged_bins - zero_count + 0.0)
            for idx1 in range(j_start, j_end):
                expanded_quantized_bins[idx1] = (0 if reference_bins[idx1] == 0
                                                 else avg_bin_ele)
            j_start += num_merged_bins
            j_end += num_merged_bins
            if (idx + 1) == len(quantized_bins) - 1:
                j_end = len(reference_bins)
        return expanded_quantized_bins

    def _safe_entropy(self, reference_distr_P, P_sum, candidate_distr_Q, Q_sum):
        '''
        Calculate the entropy.
        '''
        assert len(reference_distr_P) == len(candidate_distr_Q)
        tmp_sum1 = 0
        tmp_sum2 = 0
        for idx in range(len(reference_distr_P)):
            p_idx = reference_distr_P[idx]
            q_idx = candidate_distr_Q[idx]
            if p_idx == 0:
                tmp_sum1 += 0
                tmp_sum2 += 0
            else:
                if q_idx == 0:
                    print("Fatal error!, idx = " + str(idx) +
                          " qindex = 0! p_idx = " + str(p_idx))
                tmp_sum1 += p_idx * (math.log(Q_sum * p_idx))
                tmp_sum2 += p_idx * (math.log(P_sum * q_idx))
        return (tmp_sum1 - tmp_sum2) / P_sum