Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
84865b80
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
84865b80
编写于
11月 25, 2019
作者:
J
juncaipeng
提交者:
Tao Luo
11月 25, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add resnet50 test for post trainint quantization, test=develop (#21272)
上级
9a7832f8
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
67 addition
and
38 deletion
+67
-38
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+1
-1
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
+2
-1
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
...slim/tests/test_post_training_quantization_mobilenetv1.py
+32
-36
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
...ib/slim/tests/test_post_training_quantization_resnet50.py
+32
-0
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
84865b80
...
...
@@ -99,7 +99,7 @@ class PostTrainingQuantization(object):
params_filename = None
save_model_path = path/to/save_model_path
# prepare the sample generator according to the model, and the
# sample generator must return a s
i
mple every time. The reference
# sample generator must return a s
a
mple every time. The reference
# document: https://www.paddlepaddle.org.cn/documentation/docs/zh
# /user_guides/howto/prepare_data/use_py_reader.html
sample_generator = your_sample_generator
...
...
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
浏览文件 @
84865b80
...
...
@@ -48,7 +48,8 @@ endfunction()
if
(
WIN32
)
list
(
REMOVE_ITEM TEST_OPS test_light_nas
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50
)
endif
()
# int8 image classification python api test
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization.py
→
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization
_mobilenetv1
.py
浏览文件 @
84865b80
...
...
@@ -110,10 +110,9 @@ class TestPostTrainingQuantization(unittest.TestCase):
self
.
int8_download
=
'int8/download'
self
.
cache_folder
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset/'
+
self
.
int8_download
)
self
.
data_cache_folder
=
''
data_urls
=
[]
data_md5s
=
[]
self
.
data_cache_folder
=
''
if
os
.
environ
.
get
(
'DATASET'
)
==
'full'
:
data_urls
.
append
(
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
...
...
@@ -145,7 +144,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
'DATASET'
)
==
'full'
else
1
self
.
timestamp
=
time
.
strftime
(
'%Y-%m-%d-%H-%M-%S'
,
time
.
localtime
())
self
.
int8_model
=
''
self
.
int8_model
=
os
.
path
.
join
(
os
.
getcwd
(),
"post_training_"
+
self
.
timestamp
)
def
tearDown
(
self
):
try
:
...
...
@@ -191,14 +191,14 @@ class TestPostTrainingQuantization(unittest.TestCase):
def
download_model
(
self
):
pass
def
run_program
(
self
,
model_path
):
def
run_program
(
self
,
model_path
,
batch_size
,
infer_iterations
):
image_shape
=
[
3
,
224
,
224
]
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
[
infer_program
,
feed_dict
,
fetch_targets
]
=
\
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
val_reader
=
paddle
.
batch
(
val
(),
self
.
batch_size
)
iterations
=
self
.
infer_iterations
val_reader
=
paddle
.
batch
(
val
(),
batch_size
)
iterations
=
infer_iterations
test_info
=
[]
cnt
=
0
...
...
@@ -237,8 +237,6 @@ class TestPostTrainingQuantization(unittest.TestCase):
model_path
,
algo
=
"KL"
,
is_full_quantize
=
False
):
self
.
int8_model
=
os
.
path
.
join
(
os
.
getcwd
(),
"post_training_"
+
self
.
timestamp
)
try
:
os
.
system
(
"mkdir "
+
self
.
int8_model
)
except
Exception
as
e
:
...
...
@@ -264,52 +262,50 @@ class TestPostTrainingQuantization(unittest.TestCase):
ptq
.
quantize
()
ptq
.
save_quantized_model
(
self
.
int8_model
)
def
run_test
(
self
,
model
,
algo
,
data_urls
,
data_md5s
):
infer_iterations
=
self
.
infer_iterations
batch_size
=
self
.
batch_size
sample_iterations
=
self
.
sample_iterations
class
TestPostTrainingForMobilenetv1
(
TestPostTrainingQuantization
):
def
download_model
(
self
):
# mobilenetv1 fp32 data
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
self
.
model_cache_folder
=
self
.
download_data
(
data_urls
,
data_md5s
,
"mobilenetv1_fp32"
)
self
.
model
=
"MobileNet-V1"
self
.
algo
=
"KL"
def
test_post_training_mobilenetv1
(
self
):
self
.
download_model
()
model_cache_folder
=
self
.
download_data
(
data_urls
,
data_md5s
,
model
)
print
(
"Start FP32 inference for {0} on {1} images ..."
.
format
(
self
.
model
,
self
.
infer_iterations
*
self
.
batch_size
))
(
fp32_throughput
,
fp32_latency
,
fp32_acc1
)
=
self
.
run_program
(
self
.
model_cache_folder
+
"/model"
)
model
,
infer_iterations
*
batch_size
))
(
fp32_throughput
,
fp32_latency
,
fp32_acc1
)
=
self
.
run_program
(
model_cache_folder
+
"/model"
,
batch_size
,
infer_iterations
)
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
self
.
model
,
self
.
sample_iterations
*
self
.
batch_size
))
format
(
model
,
sample_iterations
*
batch_size
))
self
.
generate_quantized_model
(
self
.
model_cache_folder
+
"/model"
,
algo
=
self
.
algo
,
is_full_quantize
=
True
)
model_cache_folder
+
"/model"
,
algo
=
algo
,
is_full_quantize
=
True
)
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
self
.
model
,
self
.
infer_iterations
*
self
.
batch_size
))
(
int8_throughput
,
int8_latency
,
int8_acc1
)
=
self
.
run_program
(
self
.
int8_model
)
model
,
infer_iterations
*
batch_size
))
(
int8_throughput
,
int8_latency
,
int8_acc1
)
=
self
.
run_program
(
self
.
int8_model
,
batch_size
,
infer_iterations
)
print
(
"FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}"
.
format
(
self
.
model
,
self
.
batch_size
,
fp32_throughput
,
fp32_latency
,
fp32_acc1
))
format
(
model
,
batch_size
,
fp32_throughput
,
fp32_latency
,
fp32_acc1
))
print
(
"INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}"
.
format
(
self
.
model
,
self
.
batch_size
,
int8_throughput
,
int8_latency
,
int8_acc1
))
format
(
model
,
batch_size
,
int8_throughput
,
int8_latency
,
int8_acc1
))
sys
.
stdout
.
flush
()
delta_value
=
fp32_acc1
-
int8_acc1
self
.
assertLess
(
delta_value
,
0.025
)
class
TestPostTrainingForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"KL"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
0 → 100644
浏览文件 @
84865b80
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
from
test_post_training_quantization_mobilenetv1
import
TestPostTrainingQuantization
class
TestPostTrainingForResnet50
(
TestPostTrainingQuantization
):
def
test_post_training_resnet50
(
self
):
model
=
"ResNet-50"
algo
=
"direct"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
data_md5s
=
[
'4a5194524823d9b76da6e738e1367881'
]
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录