post_training_quantization.py 56.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18
import logging
import numpy as np
19
import shutil
20 21 22
from .... import io
from .... import core
from .... import framework
23
from .... import unique_name
24
from ....executor import global_scope, Executor
25 26 27 28 29
from ....framework import IrGraph
from ....log_helper import get_logger
from .quantization_pass import QuantizationTransformPass
from .quantization_pass import QuantizationFreezePass
from .quantization_pass import AddQuantDequantPass
30 31 32
from .quantization_pass import _out_scale_op_list
from .quantization_pass import _get_op_input_var_names
from .quantization_pass import _get_op_output_var_names
33
from .quantization_pass import _get_output_name_index
34
from .quantization_pass import _get_input_name_index
35
from .quantization_pass import _channelwise_quant_axis1_ops
36

37
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
38 39 40 41 42

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


43 44 45 46
def _load_variable_data(scope, var_name):
    '''
    Load variable value from scope
    '''
47 48 49 50
    var_node = scope.find_var(var_name)
    assert var_node is not None, \
        "Cannot find " + var_name + " in scope."
    return np.array(var_node.get_tensor())
51 52 53 54 55 56 57 58 59 60 61 62 63 64


def _set_variable_data(scope, place, var_name, np_value):
    '''
    Set the value of var node by name, if the node exits,
    '''
    assert isinstance(np_value, np.ndarray), \
        'The type of value should be numpy array.'
    var_node = scope.find_var(var_name)
    if var_node != None:
        tensor = var_node.get_tensor()
        tensor.set(np_value, place)


65 66 67 68 69 70 71 72
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
            attr_values), "Different number of pass attributes and their values."
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


123
class PostTrainingQuantization(object):
124 125 126 127 128 129
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

130
    def __init__(self,
131 132 133
                 executor=None,
                 scope=None,
                 model_dir=None,
134 135
                 model_filename=None,
                 params_filename=None,
136
                 batch_generator=None,
137
                 sample_generator=None,
138 139 140
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
141
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
142
                 is_full_quantize=False,
143
                 activation_bits=8,
144 145 146
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
147
                 optimize_model=False,
148
                 is_use_cache_file=False,
149
                 cache_dir=None):
150
        '''
151
        Constructor.
152 153

        Args:
154
            executor(fluid.Executor): The executor to load, run and save the
155
                quantized model.
156 157
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
158 159 160 161 162 163 164 165 166
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
167 168 169 170 171 172 173 174
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
175 176 177 178
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
179 180 181 182 183
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
                and max value for quantized activations and weights. Default is KL.
184 185
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
186 187
                "mul"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
188
                apply quantization to all supported quantizable op type. If set
189 190
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
191
            activation_bits(int): quantization bit number for activation.
192 193 194 195 196 197 198 199 200 201 202 203
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
204 205 206 207 208 209 210 211
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
212 213
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
214 215 216
        Returns:
            None

217 218 219 220 221 222
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
223 224 225 226 227 228 229 230 231
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
232
            # sample generator must return a sample every time. The reference
233 234 235
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
236 237 238
            batch_size = 10
            batch_nums = 10
            algo = "KL"
239
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
240 241
            ptq = PostTrainingQuantization(
                        executor=exe,
242 243 244 245
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
246 247 248 249 250 251 252
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
253

254 255 256 257 258
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
        self._support_algo_type = ['KL', 'abs_max', 'min_max']
259
        self._dynamic_quantize_op_type = ['lstm']
260 261
        self._support_quantize_op_type = \
            list(set(QuantizationTransformPass._supported_quantizable_op_type +
262 263
                AddQuantDequantPass._supported_quantizable_op_type +
                self._dynamic_quantize_op_type))
264 265

        # Check inputs
266 267
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
268 269 270 271 272
        assert any([gen is not None] for gen in [sample_generator,
            batch_generator]), "The sample_generator and batch_generator " \
            "cannot be None in the same time."
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
273
            "The algo should be KL, abs_max or min_max."
274 275 276 277 278 279 280 281
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
282
        self._executor = executor
283
        self._scope = global_scope() if scope == None else scope
284 285 286
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
287
        self._sample_generator = sample_generator
288
        self._batch_generator = batch_generator
289 290 291
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
292 293 294 295 296
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._is_full_quantize = is_full_quantize
297
        if is_full_quantize:
298
            self._quantizable_op_type = self._support_quantize_op_type
299 300 301
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
302
                assert op_type in self._support_quantize_op_type, \
303
                    op_type + " is not supported for quantization."
304
        self._optimize_model = optimize_model
305

306
        # Define variables
307 308 309 310 311 312
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
        self._data_loader = None

313
        self._out_scale_op_list = _out_scale_op_list
314 315
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
316 317 318 319
        self._weight_op_pairs = {}
        # The vars for alog = KL
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
320
        self._sampling_data = {}
321
        self._quantized_var_kl_threshold = {}
322 323
        self._histogram_bins = 2048
        # The vars for algo = min_max
324 325
        self._quantized_var_min = {}
        self._quantized_var_max = {}
326
        # The vars for algo = abs_max
327
        self._quantized_var_abs_max = {}
328 329 330

    def quantize(self):
        '''
331 332 333
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
334 335 336 337

        Args:
            None
        Returns:
338 339
            the program of quantized model.
        '''
340
        self._load_model_data()
341
        self._collect_target_varnames()
342
        self._set_activation_persistable()
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        if self._algo == "KL":
            _logger.info("Preparation stage ...")
            batch_id = 0
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
                self._collect_activation_abs_min_max()
                if batch_id % 5 == 0:
                    _logger.info("Run batch: " + str(batch_id))
                batch_id += 1
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
            _logger.info("Finish preparation stage, all batch:" + str(batch_id))
            self._init_sampling_act_histogram()

        _logger.info("Sampling stage ...")
363 364 365 366
        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
367
                               fetch_list=self._fetch_list,
368 369
                               return_numpy=False,
                               scope=self._scope)
370
            self._sampling()
371
            if batch_id % 5 == 0:
372
                _logger.info("Run batch: " + str(batch_id))
373 374 375
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
376
        _logger.info("Finish sampling stage, all batch: " + str(batch_id))
377

378
        self._reset_activation_persistable()
379

380 381
        if self._algo == "KL":
            self._calculate_kl_threshold()
382

383 384 385 386 387 388
        if self._algo in ["KL", "abs_max"]:
            self._update_program()
        else:
            self._save_input_threhold()

        self._save_output_threshold()
389 390 391 392
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
393 394
        return self._program

395 396 397 398
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
399 400 401 402
        '''
        Save the quantized model to the disk.

        Args:
403 404 405 406 407 408 409
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
410
        Returns:
411 412 413 414
            None
        '''
        io.save_inference_model(
            dirname=save_model_path,
415 416
            model_filename=model_filename,
            params_filename=params_filename,
417 418 419 420
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
            main_program=self._program)
421
        _logger.info("The quantized model is saved in " + save_model_path)
422

423
    def _load_model_data(self):
424
        '''
425
        Load model and set data loader.
426
        '''
427
        _logger.info("Load model and set data loader ...")
428
        [self._program, self._feed_list, self._fetch_list] = \
429 430 431 432
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
433

434 435 436 437
        if self._program.num_blocks > 1:
            _logger.error("The post training quantization requires that the "
                          "program only has one block.")

438 439 440
        if self._optimize_model:
            self._optimize_fp32_model()

441 442 443 444
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
445 446 447 448 449 450 451 452 453 454
        if self._sample_generator is not None:
            self._data_loader.set_sample_generator(
                self._sample_generator,
                batch_size=self._batch_size,
                drop_last=True,
                places=self._place)
        elif self._batch_generator is not None:
            self._data_loader.set_batch_generator(
                self._batch_generator, places=self._place)

455 456 457 458 459 460 461 462
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
463 464
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
465 466 467 468
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

469 470
        self._program = graph.to_program()

471
    def _collect_target_varnames(self):
472 473 474 475
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
476
        # TODO(juncaipeng), consider the name_scope of skip_quant
477
        _logger.info("Collect quantized variable names ...")
478

479
        def collect_var_name(var_name_list, persistable_var_names, op_type):
480 481 482
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
483
                    self._weight_op_pairs[var_name] = op_type
484 485 486
                else:
                    self._quantized_act_var_name.add(var_name)

487
        persistable_var_names = _all_persistable_var_names(self._program)
488
        for op in self._program.global_block().ops:
489
            op_type = op.type
490 491 492
            if self._is_full_quantize and \
                op_type not in self._quantizable_op_type:
                _logger.warning(op_type + " is not supported for quantization.")
493
            # For quantized ops, sample inputs and outputs
494
            if op_type in self._quantizable_op_type:
495
                collect_var_name(
496
                    _get_op_input_var_names(op), persistable_var_names, op_type)
497
                collect_var_name(
498 499
                    _get_op_output_var_names(op), persistable_var_names,
                    op_type)
500 501 502
            # For other op, only sample output scale
            elif op_type in self._out_scale_op_list:
                collect_var_name(
503 504
                    _get_op_output_var_names(op), persistable_var_names,
                    op_type)
505 506 507 508 509 510

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
511 512 513 514
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

515 516 517 518 519 520 521 522
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False

523
    def _sampling(self):
524
        '''
525
        Sample the min/max, abs_max or histogram in every iterations.
526 527
        '''
        if self._algo == "abs_max":
528
            self._sample_abs_max()
529
        elif self._algo == "min_max":
530 531 532
            self._sample_min_max()
        elif self._algo == "KL":
            self._sample_histogram()
533

534
    def _sample_abs_max(self):
535 536 537 538 539 540 541 542
        # Only calculate abs_max value for weight for once
        if self._quantized_var_abs_max == {}:
            for var_name in self._quantized_weight_var_name:
                var_tensor = _load_variable_data(self._scope, var_name)
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
543
                    if self._weight_op_pairs[
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
                            var_name] in _channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_var_abs_max[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
            var_tensor = _load_variable_data(self._scope, var_name)
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_abs_max) or \
                (abs_max_value > self._quantized_var_abs_max[var_name]):
                self._quantized_var_abs_max[var_name] = abs_max_value

561
    def _sample_min_max(self):
562 563
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
564
                var_tensor = _load_variable_data(self._scope, var_name)
565 566 567 568 569 570
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
571
                    if self._weight_op_pairs[
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
                            var_name] in _channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
            var_tensor = _load_variable_data(self._scope, var_name)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
593

594 595 596 597 598 599 600 601
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
            var_tensor = _load_variable_data(self._scope, var_name)
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

602 603 604 605 606 607 608 609
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
        for op in self._program.global_block().ops:
            if op.type in self._quantizable_op_type:
610 611 612 613 614 615 616
                for var_name in _get_op_input_var_names(op):
                    assert var_name in self._quantized_var_min
                    assert var_name in self._quantized_var_max
                    op._set_attr(var_name + ".min",
                                 self._quantized_var_min[var_name])
                    op._set_attr(var_name + ".max",
                                 self._quantized_var_max[var_name])
617

618
    def _collect_activation_abs_min_max(self):
619
        '''
620 621
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
622
        '''
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
        for var_name in self._quantized_act_var_name:
            var_tensor = _load_variable_data(self._scope, var_name)
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
                self._sampling_act_abs_min_max[
                    var_name] = [min_value, max_value]
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
                hist, hist_edeges = np.histogram(
                    [], bins=self._histogram_bins, range=(min_val, max_val))
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
648

649
    def _calculate_kl_threshold(self):
650
        '''
651
        Calculate the KL threshold of quantized variables.
652
        '''
653 654
        _logger.info("Calculate KL threshold ...")
        assert self._algo == "KL", "The algo should be KL to calculate kl threshold."
655 656

        # Abs_max threshold for weights
657
        for var_name in self._quantized_weight_var_name:
658
            weight_data = _load_variable_data(self._scope, var_name)
659
            if self._weight_quantize_type == "abs_max":
660
                weight_threshold = float(np.max(np.abs(weight_data)))
661 662
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
663
                if self._weight_op_pairs[
664 665 666 667 668 669 670 671
                        var_name] in _channelwise_quant_axis1_ops:
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
672 673
            self._quantized_var_kl_threshold[var_name] = weight_threshold

674 675 676 677
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
            self._quantized_var_kl_threshold[var_name] = \
                self._get_kl_scaling_factor(hist, hist_edeges)
678 679 680

    def _update_program(self):
        '''
681 682 683
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
        Besides, save all kl threshold to the scale var node.
684
        '''
685
        _logger.info("Update the program ...")
686 687
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

688
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
689 690
        major_quantizable_op_types = []
        for op_type in QuantizationTransformPass._supported_quantizable_op_type:
691
            if op_type in self._quantizable_op_type:
692
                major_quantizable_op_types.append(op_type)
693 694 695
        transform_pass = QuantizationTransformPass(
            scope=self._scope,
            place=self._place,
696 697 698 699
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            activation_quantize_type=self._activation_quantize_type,
            weight_quantize_type=self._weight_quantize_type,
700
            quantizable_op_type=major_quantizable_op_types)
701 702 703
        transform_pass.apply(graph)

        # use AddQuantDequantPass to insert fake_quant_dequant op
704 705
        minor_quantizable_op_types = []
        for op_type in AddQuantDequantPass._supported_quantizable_op_type:
706
            if op_type in self._quantizable_op_type:
707
                minor_quantizable_op_types.append(op_type)
708 709 710
        add_quant_dequant_pass = AddQuantDequantPass(
            scope=self._scope,
            place=self._place,
711
            quantizable_op_type=minor_quantizable_op_types)
712 713
        add_quant_dequant_pass.apply(graph)

714 715 716 717 718 719
        # save abs_max or KL threshold to scale var node
        if self._algo == "KL":
            scale_dict = self._quantized_var_kl_threshold
        else:
            scale_dict = self._quantized_var_abs_max
        for key, val in scale_dict.items():
720 721 722 723 724
            _set_variable_data(
                self._scope,
                self._place,
                key + ".scale",
                np.array(
725
                    [val], dtype=np.float32))
726 727 728 729 730
            _set_variable_data(
                self._scope,
                self._place,
                key + ".quant_dequant.scale",
                np.array(
731 732 733 734 735 736
                    [val], dtype=np.float32))

        # apply QuantizationFreezePass, and obtain the final quant model
        freeze_pass = QuantizationFreezePass(
            scope=self._scope,
            place=self._place,
737 738 739
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            weight_quantize_type=self._weight_quantize_type,
740
            quantizable_op_type=major_quantizable_op_types)
741 742 743
        freeze_pass.apply(graph)
        self._program = graph.to_program()

744
    def _save_output_threshold(self):
745
        '''
746
        Save output threshold to the quantized op.
747
        '''
748 749 750 751 752 753 754 755 756 757 758

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
759 760 761
            argname_index = _get_output_name_index(op_node, out_var_name)
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
762
            if self._algo == "KL":
763
                # For compatibility, we save output threshold by two methods.
764 765 766
                save_info(op_node, out_var_name,
                          self._quantized_var_kl_threshold, "out_threshold",
                          "post_kl")
767 768 769 770
                save_info(
                    op_node, out_var_name, self._quantized_var_kl_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
771 772 773
            elif self._algo == "abs_max":
                save_info(op_node, out_var_name, self._quantized_var_abs_max,
                          "out_threshold", "post_abs_max")
774 775 776 777
                save_info(
                    op_node, out_var_name, self._quantized_var_abs_max,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
778 779 780 781 782 783
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

784
        for op in self._program.global_block().ops:
785 786 787 788 789 790
            if op.type in (self._quantizable_op_type + self._out_scale_op_list):
                out_var_names = _get_op_output_var_names(op)
                assert len(out_var_names) == 1, "Post training " + \
                    "quantization only support one output for " + op.type
                for var_name in out_var_names:
                    analysis_and_save_info(op, var_name)
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
            for var_name in _get_op_input_var_names(op):
                if var_name in persistable_var_names:
                    var_data = _load_variable_data(self._scope, var_name)
                    threshold = float(np.max(np.abs(var_data)))
                    argname, index = _get_input_name_index(op, var_name)
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)

820
    def _get_kl_scaling_factor(self, hist, hist_edeges, num_quantized_bins=255):
821 822 823
        '''
        Using the KL-divergenc method to get the more precise scaling factor.
        '''
824 825
        ending_iter = self._histogram_bins - 1
        starting_iter = int(ending_iter * 0.7)
826 827
        bin_width = hist_edeges[1] - hist_edeges[0]

828
        P_sum = np.sum(np.array(hist).ravel())
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
        min_kl_divergence = 0
        min_kl_index = 0
        kl_inited = False
        for i in range(starting_iter, ending_iter + 1):
            reference_distr_P = hist[0:i].tolist()
            outliers_count = sum(hist[i:2048])
            if reference_distr_P[i - 1] == 0:
                continue
            reference_distr_P[i - 1] += outliers_count
            reference_distr_bins = reference_distr_P[:]
            candidate_distr_Q = hist[0:i].tolist()
            num_merged_bins = int(i / num_quantized_bins)
            candidate_distr_Q_quantized = [0] * num_quantized_bins
            j_start = 0
            j_end = num_merged_bins
            for idx in range(num_quantized_bins):
                candidate_distr_Q_quantized[idx] = sum(candidate_distr_Q[
                    j_start:j_end])
                j_start += num_merged_bins
                j_end += num_merged_bins
                if (idx + 1) == num_quantized_bins - 1:
                    j_end = i
            candidate_distr_Q = self._expand_quantized_bins(
                candidate_distr_Q_quantized, reference_distr_bins)
            Q_sum = sum(candidate_distr_Q)
            kl_divergence = self._safe_entropy(reference_distr_P, P_sum,
                                               candidate_distr_Q, Q_sum)
            if not kl_inited:
                min_kl_divergence = kl_divergence
                min_kl_index = i
                kl_inited = True
            elif kl_divergence < min_kl_divergence:
                min_kl_divergence = kl_divergence
                min_kl_index = i
            else:
                pass
        if min_kl_index == 0:
            while starting_iter > 0:
                if hist[starting_iter] == 0:
                    starting_iter -= 1
                    continue
                else:
                    break
            min_kl_index = starting_iter
        return (min_kl_index + 0.5) * bin_width

    def _expand_quantized_bins(self, quantized_bins, reference_bins):
        '''
        '''
        expanded_quantized_bins = [0] * len(reference_bins)
        num_merged_bins = int(len(reference_bins) / len(quantized_bins))
        j_start = 0
        j_end = num_merged_bins
        for idx in range(len(quantized_bins)):
            zero_count = reference_bins[j_start:j_end].count(0)
            num_merged_bins = j_end - j_start
            if zero_count == num_merged_bins:
                avg_bin_ele = 0
            else:
                avg_bin_ele = quantized_bins[idx] / (
                    num_merged_bins - zero_count + 0.0)
            for idx1 in range(j_start, j_end):
                expanded_quantized_bins[idx1] = (0 if reference_bins[idx1] == 0
                                                 else avg_bin_ele)
            j_start += num_merged_bins
            j_end += num_merged_bins
            if (idx + 1) == len(quantized_bins) - 1:
                j_end = len(reference_bins)
        return expanded_quantized_bins

    def _safe_entropy(self, reference_distr_P, P_sum, candidate_distr_Q, Q_sum):
        '''
        Calculate the entropy.
        '''
        assert len(reference_distr_P) == len(candidate_distr_Q)
        tmp_sum1 = 0
        tmp_sum2 = 0
        for idx in range(len(reference_distr_P)):
            p_idx = reference_distr_P[idx]
            q_idx = candidate_distr_Q[idx]
            if p_idx == 0:
                tmp_sum1 += 0
                tmp_sum2 += 0
            else:
                if q_idx == 0:
914 915
                    _logger.error("Fatal error!, idx = " + str(idx) +
                                  " qindex = 0! p_idx = " + str(p_idx))
916 917 918
                tmp_sum1 += p_idx * (math.log(Q_sum * p_idx))
                tmp_sum2 += p_idx * (math.log(P_sum * q_idx))
        return (tmp_sum1 - tmp_sum2) / P_sum
919 920 921 922


class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
923
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
950
                               weight_bits=8,
951 952
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
972 973
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
974 975 976 977 978 979 980
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
981 982 983 984 985 986 987 988 989
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
990
                "Input error:" + op_type + \
991
                " is not supported for weight quantization."
992
        assert weight_bits in [8, 16], \
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
            self._quantize_weight_to_int(
                test_model_dir, save_model_filename, save_params_filename,
                quantizable_op_type, weight_bits, weight_quantize_type, True,
                threshold_rate)

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
                save_file_path = os.path.join(
                    os.path.normpath(save_model_dir), new_var.name)
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={
                        'file_path': os.path.normpath(save_file_path),
                        'save_as_fp16': True
                    })

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

            save_path = os.path.join(
                os.path.normpath(save_model_dir), self._params_filename)
            save_block.append_op(
                type='save_combine',
                inputs={'X': save_var_list},
                outputs={'Y': saved_params_var},
                attrs={'file_path': save_path,
                       'save_as_fp16': True})

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1087 1088 1089 1090 1091 1092 1093 1094
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1095 1096 1097 1098 1099 1100 1101 1102 1103
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

        io.save_inference_model(
            dirname=save_model_dir,
            feeded_var_names=feed_list,
            target_vars=fetch_list,
            executor=exe,
            main_program=program,
            model_filename=save_model_filename,
            params_filename=save_params_filename)

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
        weight_data = _load_variable_data(scope, var_name)
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
            _set_variable_data(scope, place, var_name, quantized_weight_data)
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
            _set_variable_data(scope, place, var_name, dequantized_weight_data)

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list

    def _weight_channel_wise_abs_max_quantization(
            self, scope, place, weight_bits, op, var_name, for_test):
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
        weight_data = _load_variable_data(scope, var_name)
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
            _set_variable_data(scope, place, var_name, quantized_weight_data)
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
            _set_variable_data(scope, place, var_name, dequantized_weight_data)

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
        hist, hist_edeges = np.histogram(
            input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width