device_context.cc 29.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
W
Wilber 已提交
13
#include <functional>
14
#include <memory>
15
#include <set>
W
Wilber 已提交
16 17
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"
18 19
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/allocator.h"
20

21
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
22
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/platform/cuda_device_guard.h"
24
#endif
F
fwenguang 已提交
25 26 27 28
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#include "paddle/fluid/platform/device/mlu/device_context_allocator.h"
#endif
29
#include "glog/logging.h"
30
#include "paddle/fluid/framework/expect.h"
W
Wilber 已提交
31
#include "paddle/fluid/framework/generator.h"
32
#include "paddle/fluid/memory/allocation/allocator_facade.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
34
#include "paddle/fluid/platform/profiler.h"
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36

37 38 39 40 41
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
42
  if (size == 0) {
43 44
    return Alloc(place, size);
  }
45 46

  if (platform::is_gpu_place(place)) {
47
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
66 67
    return Alloc(place, size);
#else
68 69 70
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
F
fwenguang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    auto* default_dev_ctx = static_cast<platform::MLUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::MLUDeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::MLUDeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use MLU device since it's not compiled with MLU,"
        "Please recompile or reinstall Paddle with MLU support."));
88
#endif
89 90 91
  } else {
    return Alloc(place, size);
  }
92 93 94 95 96
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
97 98 99
namespace paddle {
namespace platform {

100
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
101 102 103
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
104 105 106 107

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
108 109
#endif  // PADDLE_WITH_CUDA

110 111 112 113 114 115 116
DeviceType Place2DeviceType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return platform::DeviceType::CPU;
  } else if (platform::is_gpu_place(place)) {
    return platform::DeviceType::CUDA;
  } else if (platform::is_xpu_place(place)) {
    return platform::DeviceType::XPU;
F
fwenguang 已提交
117 118
  } else if (platform::is_mlu_place(place)) {
    return platform::DeviceType::MLU;
119 120 121 122 123 124
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported place %s to convert into platform::DeviceType.", place));
  }
}

D
dzhwinter 已提交
125 126
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
127
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
128
  VLOG(6) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
129 130
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
131 132
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
F
fwenguang 已提交
133 134
        "with WITH_GPU, WITH_XPU, WITH_IPU, WITH_MLU or WITH_ASCEND_CL option "
        "or check "
J
jianghaicheng 已提交
135 136
        "that your train process set the correct device id if you use "
        "Executor.",
G
GaoWei8 已提交
137
        place));
D
dzhwinter 已提交
138
  }
139
  return it->second.get().get();
D
dzhwinter 已提交
140 141
}

W
Wilber 已提交
142
template <typename DevCtx>
143 144 145 146 147
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
148 149 150 151 152 153 154 155 156 157 158 159
  map_ptr->emplace(
      p, std::async(std::launch::deferred, [=] {
        // lazy evaluation. i.e., only create device context at
        // first `Get`
        auto* dev_ctx = new DevCtx(p);
        if (is_gpu_place(p)) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
          auto* cuda_ctx = dynamic_cast<CUDADeviceContext*>(dev_ctx);
          PADDLE_ENFORCE_NOT_NULL(
              cuda_ctx,
              platform::errors::InvalidArgument(
                  "Failed to dynamic_cast dev_ctx into CUDADeviceContext."));
W
Wilber 已提交
160 161 162 163 164 165
          // Note: A trick method to init context, why GetAllocator interface
          // needs a stream parameter?
          dev_ctx->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetAllocator(p, cuda_ctx->stream())
                                    .get());
          cuda_ctx->PartialInitWithAllocator();
W
Wilber 已提交
166 167
          dev_ctx->SetGenerator(
              framework::GetDefaultCUDAGenerator(p.GetDeviceId()).get());
168 169
#endif
        } else {
W
Wilber 已提交
170 171 172
          dev_ctx->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetAllocator(p)
                                    .get());
W
Wilber 已提交
173
          dev_ctx->SetGenerator(framework::DefaultCPUGenerator().get());
174
        }
L
Leo Chen 已提交
175
        dev_ctx->SetHostGenerator(framework::DefaultCPUGenerator().get());
176 177 178 179 180 181 182 183 184 185
        dev_ctx->SetHostAllocator(
            memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(platform::CPUPlace())
                .get());
        dev_ctx->SetZeroAllocator(
            memory::allocation::AllocatorFacade::Instance()
                .GetZeroAllocator(p)
                .get());
        return PtrType(dev_ctx);
      }));
C
chengduozh 已提交
186 187
}

D
dzhwinter 已提交
188 189
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
190 191 192 193 194
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
195
  std::set<Place> set;
Y
Yu Yang 已提交
196 197 198 199 200
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
201
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
202
      EmplaceDeviceContext<MKLDNNDeviceContext>(&device_contexts_, p);
203
#else
W
Wilber 已提交
204
      EmplaceDeviceContext<CPUDeviceContext>(&device_contexts_, p);
205
#endif
Y
Yu Yang 已提交
206
    } else if (platform::is_gpu_place(p)) {
207
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
Wilber 已提交
208
      EmplaceDeviceContext<CUDADeviceContext>(&device_contexts_, p);
D
dzhwinter 已提交
209
#else
G
GaoWei8 已提交
210 211 212
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
213 214
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
215
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
Wilber 已提交
216
      EmplaceDeviceContext<CUDAPinnedDeviceContext>(&device_contexts_, p);
C
chengduoZH 已提交
217
#else
G
GaoWei8 已提交
218
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
219 220
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
221 222 223
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
224
      EmplaceDeviceContext<XPUDeviceContext>(&device_contexts_, p);
225 226 227 228
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
F
fwenguang 已提交
229 230 231
#endif
    } else if (platform::is_mlu_place(p)) {
#ifdef PADDLE_WITH_MLU
W
Wilber 已提交
232
      EmplaceDeviceContext<MLUDeviceContext>(&device_contexts_, p);
F
fwenguang 已提交
233 234 235 236
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("MLUPlace is not supported. Please "
                                          "re-compile with WITH_MLU option."));
J
jianghaicheng 已提交
237 238 239
#endif
    } else if (platform::is_ipu_place(p)) {
#ifdef PADDLE_WITH_IPU
W
Wilber 已提交
240
      EmplaceDeviceContext<IPUDeviceContext>(&device_contexts_, p);
J
jianghaicheng 已提交
241 242 243 244
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("IPUPlace is not supported. Please "
                                          "re-compile with WITH_IPU option."));
245 246 247
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
W
Wilber 已提交
248
      EmplaceDeviceContext<NPUDeviceContext>(&device_contexts_, p);
249 250 251 252
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
253 254 255
#endif
    } else if (platform::is_npu_pinned_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
W
Wilber 已提交
256
      EmplaceDeviceContext<NPUPinnedDeviceContext>(&device_contexts_, p);
257 258 259 260 261
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPinnedPlace is not supported. Please re-compile with "
          "WITH_ASCEND_CL "
          "option."));
262 263 264 265 266 267 268 269 270
#endif
    } else if (platform::is_custom_place(p)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      EmplaceDeviceContext<CustomDeviceContext>(&device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CustomPlace is not supported. Please re-compile with "
          "WITH_CUSTOM_DEVICE "
          "option."));
D
dzhwinter 已提交
271 272 273 274 275
#endif
    }
  }
}

276 277
CPUDeviceContext::CPUDeviceContext() : phi::CPUContext() {
  phi::CPUContext::Init();
W
Wilber 已提交
278
}
279

280 281
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : phi::CPUContext(place) {
  phi::CPUContext::Init();
W
Wilber 已提交
282
}
283

J
jianghaicheng 已提交
284
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
285
IPUDeviceContext::IPUDeviceContext(IPUPlace place) : place_(place) {}
J
jianghaicheng 已提交
286

W
Wilber 已提交
287
const Place& IPUDeviceContext::GetPlace() const { return place_; }
A
Allen Guo 已提交
288

J
jianghaicheng 已提交
289 290 291 292 293 294 295
void IPUDeviceContext::Wait() const {
  /*! \brief  Wait for all operations completion in the stream. */
}

IPUDeviceContext::~IPUDeviceContext() {}

#endif
296
#ifdef PADDLE_WITH_XPU
297 298
XPUDeviceContext::XPUDeviceContext() : phi::XPUContext() {
  phi::XPUContext::Init();
W
Wilber 已提交
299
}
300

301
XPUDeviceContext::~XPUDeviceContext() {}
302

303 304
XPUDeviceContext::XPUDeviceContext(XPUPlace place) : phi::XPUContext(place) {
  phi::XPUContext::Init();
305
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: "
W
Wilber 已提交
306
                          << static_cast<int>(place.device);
307 308 309
}
#endif

310 311 312 313 314 315 316
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
317
  platform::GetCurrentNPUContext(&context_);
318 319 320 321 322 323 324
  stream_.reset(new stream::NPUStream(place));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}
325

326
void NPUDeviceContext::Wait() const {
327 328
  platform::RecordEvent record_event("NPUDeviceContext/wait",
                                     platform::TracerEventType::UserDefined, 2);
329 330
  VLOG(4) << "NPU context(" << this << ")  Wait";
  stream_->Wait();
331 332 333 334
}

aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

W
Wilber 已提交
335
const Place& NPUDeviceContext::GetPlace() const { return place_; }
336 337

aclrtContext NPUDeviceContext::context() const { return context_; }
338 339 340 341 342 343 344 345 346 347 348 349 350 351

NPUPinnedDeviceContext::NPUPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

NPUPinnedDeviceContext::NPUPinnedDeviceContext(NPUPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* NPUPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

W
Wilber 已提交
352
const Place& NPUPinnedDeviceContext::GetPlace() const { return place_; }
353

354 355 356
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
init  
qijun 已提交
357 358 359 360 361 362 363
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

364
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
365 366 367 368 369
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

370
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
371

372 373 374
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
375
  const cudaDeviceProp& deviceProperties() const override {
376
#endif
Q
init  
qijun 已提交
377 378 379 380
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
381 382 383
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
384 385 386
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
387
    void* retv = buf->ptr();
S
sneaxiy 已提交
388 389 390 391
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
392
    return retv;
Q
init  
qijun 已提交
393 394
  }

S
sneaxiy 已提交
395 396 397 398 399 400
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
401 402 403

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
404
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
Q
init  
qijun 已提交
405 406 407 408 409 410
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
411
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
Q
init  
qijun 已提交
412
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
413
#ifdef PADDLE_WITH_HIP
414
      PADDLE_ENFORCE_GPU_SUCCESS(
415 416
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
417
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
init  
qijun 已提交
418
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
419
#endif
Q
init  
qijun 已提交
420 421 422 423 424
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
425
  CUDAPlace place_;
426 427 428 429
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
430
  const cudaDeviceProp* device_prop_;  // not owned;
431
#endif
Q
qijun 已提交
432
  mutable void* scratch_;
Q
init  
qijun 已提交
433
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
434
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
435
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
436 437
};

438 439 440 441 442 443 444 445 446
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

447 448 449 450 451 452 453 454 455 456 457 458
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
459 460
                         const stream::Priority& priority,
                         const stream::StreamFlag& flag) {
461 462
  place_ = place;
  CUDADeviceGuard guard(place_.device);
463
  stream_.reset(new stream::CUDAStream(place, priority, flag));
464 465 466
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
467
#ifndef PADDLE_WITH_HIP
Z
zhangkaihuo 已提交
468
  InitCuSparseContext();
G
Guo Sheng 已提交
469
  InitCuSolverContext();
470
#endif
471 472
}

W
Wilber 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
void CUDAContext::SetStream(gpuStream_t stream) {
  if (stream_->raw_stream() != stream) {
    CUDADeviceGuard guard(place_.device);
    DestoryCuDNNContext();
    DestoryCuBlasContext();
#ifndef PADDLE_WITH_HIP
    DestoryCuSolverContext();
#endif

    stream_->SetStream(stream);

    InitEigenContext();
    InitCuBlasContext();
    InitCuDNNContext();
#ifndef PADDLE_WITH_HIP
    InitCuSolverContext();
#endif
  }
}

493 494 495 496
CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
497
#ifndef PADDLE_WITH_HIP
Z
zhangkaihuo 已提交
498
  DestoryCuSparseContext();
G
Guo Sheng 已提交
499
  DestoryCuSolverContext();
500
#endif
501 502
}

503 504 505 506
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : phi::GPUContext(place) {
  phi::GPUContext::PartialInitWithoutAllocator();
  cuda_stream_.reset(new stream::CUDAStream(phi::GPUContext::stream(), place));
  workspace_.reset(new phi::DnnWorkspaceHandle(
W
Wilber 已提交
507
      memory::allocation::AllocatorFacade::Instance()
508
          .GetAllocator(place, phi::GPUContext::stream())
W
Wilber 已提交
509
          .get()));
510 511
}

W
Wilber 已提交
512
CUDADeviceContext::~CUDADeviceContext() = default;
513

514
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
W
Wilber 已提交
515 516 517
  if (thread_ctx_.count(this)) {
    return context()->EigenDevice().get();
  }
518
  return phi::GPUContext::eigen_device();
S
sneaxiy 已提交
519 520
}

W
Wilber 已提交
521 522 523 524 525
void CUDADeviceContext::Wait() const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->Wait();
    return;
  }
526
  phi::GPUContext::Wait();
527 528
}

529 530 531
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
532
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
533
#endif
W
Wilber 已提交
534 535 536
  if (thread_ctx_.count(this)) {
    return context()->CudnnHandle();
  }
537
  return phi::GPUContext::cudnn_handle();
538
}
539

540 541
#ifdef PADDLE_WITH_HIP
rocblas_handle CUDADeviceContext::cublas_handle() const {
W
Wilber 已提交
542 543 544
  if (thread_ctx_.count(this)) {
    return context()->CublasHandle()->GetCublasHandle();
  }
545
  return phi::GPUContext::cublas_handle();
546 547
}
#else
548
cublasHandle_t CUDADeviceContext::cublas_handle() const {
W
Wilber 已提交
549 550 551
  if (thread_ctx_.count(this)) {
    return context()->CublasHandle()->GetCublasHandle();
  }
552
  return phi::GPUContext::cublas_handle();
553
}
Z
zhangkaihuo 已提交
554
cusparseHandle_t CUDADeviceContext::cusparse_handle() const {
W
Wilber 已提交
555 556 557
  if (thread_ctx_.count(this)) {
    return context()->CusparseHandle()->GetCusparseHandle();
  }
558
  return phi::GPUContext::cusparse_handle();
W
Wilber 已提交
559 560 561 562 563
}
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  if (thread_ctx_.count(this)) {
    return context()->CusolverDnHandle();
  }
564
  return phi::GPUContext::cusolver_dn_handle();
Z
zhangkaihuo 已提交
565
}
566
#endif
567

W
Wilber 已提交
568 569 570 571 572 573
void CUDADeviceContext::RecordEvent(
    gpuEvent_t ev, const std::function<void()>& callback) const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->RecordEvent(ev, callback);
    return;
  }
574
  phi::GPUContext::RecordEvent(ev, callback);
W
Wilber 已提交
575 576 577 578 579 580 581 582
}

void CUDADeviceContext::AddStreamCallback(
    const std::function<void()>& callback) const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->AddCallback(callback);
    return;
  }
583
  phi::GPUContext::AddStreamCallback(callback);
W
Wilber 已提交
584 585 586 587 588 589 590
}

void CUDADeviceContext::WaitStreamCallback() const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->WaitCallback();
    return;
  }
591
  phi::GPUContext::WaitStreamCallback();
W
Wilber 已提交
592 593
}

594
phi::DnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
W
Wilber 已提交
595 596
  if (thread_ctx_.count(this)) {
    // return workspace_.get();
597
    return phi::DnnWorkspaceHandle(
W
Wilber 已提交
598
        memory::allocation::AllocatorFacade::Instance()
599
            .GetAllocator(GetPlace(), phi::GPUContext::stream())
W
Wilber 已提交
600 601
            .get());
  }
602
  return phi::GPUContext::cudnn_workspace_handle();
603
}
604

W
Wilber 已提交
605 606 607 608
gpuStream_t CUDADeviceContext::stream() const {
  if (thread_ctx_.count(this)) {
    return context()->RawStream();
  }
609
  return phi::GPUContext::stream();
G
Guo Sheng 已提交
610 611
}

W
Wilber 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
std::shared_ptr<CUDAContext> CUDADeviceContext::context() const {
  if (!thread_ctx_.count(this)) {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "CUDADeviceContext call context() failed, make sure in the "
        "thread_local semantic."));
  }
  return thread_ctx_.at(this);
}

stream::CUDAStream* CUDADeviceContext::GetCudaStream() const {
  return cuda_stream_.get();
}

stream::CUDAStream* CUDADeviceContext::SetCudaStream(
    stream::CUDAStream* new_stream_ptr) {
  auto* old_stream_ptr = cuda_stream_.release();
  cuda_stream_.reset(new_stream_ptr);
  return old_stream_ptr;
}
Q
qijun 已提交
631

C
chengduoZH 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

W
Wilber 已提交
645
const Place& CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
646
#endif
Q
qijun 已提交
647

T
tensor-tang 已提交
648 649
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
650
    : CPUDeviceContext(place), p_blobmap_() {
651
  p_blobmap_.reset(new BlobMap());
652
  p_exec_items_.reset(new ExecShape());
653
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
654 655
}

656
MKLDNNDeviceContextThreadLocals::Body::Body()
657
    : cur_engine(dnnl::engine::kind::cpu, 0), cur_stream(cur_engine) {
658 659 660 661 662 663
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

664 665 666 667 668 669 670 671 672 673 674 675
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
676
  dev_ctx->ResetBlobMap(exec_ptr_);
677 678
}

679 680 681 682 683 684 685 686 687 688
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
689 690
  cur_input_shape_str = input_shape_str;
}
691 692
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
693 694
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
695

696 697
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
698 699 700
  cur_paddle_data_layout = dl;
}

701 702
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
703 704 705
  return cur_paddle_data_layout;
}

706 707 708 709 710 711 712 713 714
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

715
const dnnl::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
716 717 718
  return cur_engine;
}

719
dnnl::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
720 721 722
  return cur_stream;
}

723
void MKLDNNDeviceContext::ResetBlobMap(void* ptr) {
724 725 726
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
727 728 729 730 731 732
    // If no specific executor pointer then clear
    // everything. For executor pointer then clear only
    // objects allocated when using given executor
    if (ptr == nullptr) {
      p_blobmap_->clear();
    } else {
733 734 735 736 737
      // Iterate through all shapes and release
      // for each shape and active executor all entries
      // of this executor
      for (auto& s : *p_exec_items_) {
        for (auto& v : (*s.second)[ptr]) {
738
          (v.first)->erase(v.second);
739 740
        }
        s.second->erase(ptr);
741 742
      }
    }
743 744 745 746 747 748
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

749 750
void MKLDNNDeviceContext::RemoveShapeEntriesWithExecutor(void) const {
  p_exec_items_->erase(p_exec_items_->begin());
751 752
}

753 754
void MKLDNNDeviceContext::LinkEntryWithExecutor(BlobPtr_t<KeyBlob> pblob,
                                                KeyBlob::iterator it) const {
755
  // Take current input shape from TLS
756 757
  // Take current executor addess from TLS
  // and for this executor's items add the one defined with arguments
758 759 760 761 762 763 764 765 766
  auto key_it = p_exec_items_
                    ->insert(std::make_pair(tls().cur_input_shape_str,
                                            std::make_shared<ExecMap>()))
                    .first;
  (*key_it->second)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));

  VLOG(3) << "LinkEntryWithExecutor, shapes: " << p_exec_items_->size()
          << " curr exec size: "
          << (*key_it->second)[tls().get_curr_exec()].size() << "\n";
767 768
}

769 770 771 772
void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
773
}
774

775
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
776
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
777
  BlobMap* pMap = p_blobmap_.get();
778
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
779
  if (map_it == pMap->end()) {
780 781 782
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
783 784 785 786
  }
  return map_it->second->size();
}

787
void MKLDNNDeviceContext::SetBlob(const std::string& name,
788
                                  BlobPtr_t<void> data) const {
789
  BlobMap* pMap = p_blobmap_.get();
790
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
791
  BlobPtr_t<KeyBlob> pBlob = nullptr;
792

793
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
794

795
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
796

797 798
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
799 800 801

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
802
    sBlob = std::make_shared<ShapeBlob>();
803 804
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
805
  } else {
806
    sBlob = map_it->second;
807
  }
T
tensor-tang 已提交
808

809
  // Find KeyBlob for current input shape
810
  auto key_it = sBlob->find(tls().cur_input_shape_str);
811

812
  if (key_it == sBlob->end()) {
813 814
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
815 816
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
817
        sBlob->size() &&
818
        (sBlob->size() >=
819
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
820 821 822 823
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
      RemoveShapeEntriesWithExecutor();
824
    }
825
    pBlob = std::make_shared<KeyBlob>();
826
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
827
  } else {
828
    pBlob = key_it->second;
829 830
  }

831
  // Find Blob via name
832 833 834 835
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    auto el =
        pBlob->insert(std::make_pair(name, data));  //  (*pBlob)[name] = data;
836 837 838
    // Register new element in per executor map
    // to have easily erased when executor terminated
    LinkEntryWithExecutor(pBlob, el.first);
839 840 841
  } else {
    blob_it->second = data;  // set data to existing blob
  }
842
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
843
  // lock will be automatically released when out of scope
844
  return;
T
tensor-tang 已提交
845 846
}

847
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) const {
848 849 850
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
851
      num_entries += (l2.second)->size();
852 853 854 855 856
    }
  }
  return num_entries;
}

857
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
858
    const std::string& name) const {
859
  BlobMap* pMap = p_blobmap_.get();
860
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
861
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
862

863
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
864

865
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
866

867 868
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
869 870 871 872
  // (jczaja): After first iteration of model's execution we
  // should have all elements cached (mostly) so failures are unlikely (less
  // likely for dynamic shapes)
  if (unlikely(map_it == pMap->end())) {
873
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
874 875 876 877 878
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
879
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
880
  if (unlikely(sBlob_it == sBlob->end())) {
881
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
882 883 884 885
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
886 887

  // Find Blob via name
888
  auto key_it = pBlob->find(name);
889

890
  if (unlikely(key_it == pBlob->end())) {
891
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
892 893
    return nullptr;
  }
894

895
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
896 897
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
898 899
}

900 901 902
#endif

#ifdef PADDLE_WITH_CUSTOM_DEVICE
903 904 905
CustomDeviceContext::CustomDeviceContext(CustomPlace place)
    : phi::CustomContext(place) {
  Init();
906
  stream_.reset(new phi::stream::Stream(place, stream()));
907 908 909
}

CustomDeviceContext::~CustomDeviceContext() {}
T
tensor-tang 已提交
910
#endif
Q
qijun 已提交
911
}  // namespace platform
Q
qijun 已提交
912
}  // namespace paddle