tensor.py 60.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
29
import numpy
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'kron',
Y
Yu Yang 已提交
59 60 61
]


X
xuwei06 已提交
62
def create_tensor(dtype, name=None, persistable=False):
63
    """
W
wangchaochaohu 已提交
64
    Create a variable, which will hold a Tensor with data type dtype.
65 66

    Args:
W
wangchaochaohu 已提交
67 68 69 70
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
71
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
72
            default value is False.
73 74

    Returns:
W
wangchaochaohu 已提交
75
        Variable: The tensor to be created according to dtype.
76 77 78 79

    Examples:
        .. code-block:: python

80
          import paddle.fluid as fluid
81 82
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
83 84 85 86
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
87
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
88 89
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
90 91


92 93
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
94
                     name=None,
95 96 97 98
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
99
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
100 101 102 103 104
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

105 106 107 108 109 110 111
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
112 113 114
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
115
        default_initializer (Initializer, optional): Initializer for the parameter
116 117

    Returns:
118
        The created parameter.
Y
yuyang18 已提交
119 120

    Examples:
121 122
        .. code-block:: python

123
            import paddle.fluid as fluid
124 125
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
126
    """
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
146
    helper = LayerHelper("create_parameter", **locals())
147
    if attr is None:
X
xuwei06 已提交
148
        attr = ParamAttr(name=name)
149 150
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
151 152 153
                                   default_initializer)


154 155 156 157 158 159 160
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
161
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
162

163 164 165
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
166
                      variable will be filled with it.
167 168
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
169
                           Default: False
170
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
171
                         Default: False
172 173
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
174 175

    Returns:
176
        Variable: The created Variable
F
fengjiayi 已提交
177 178 179 180

    Examples:
        .. code-block:: python

181
            import paddle.fluid as fluid
182 183
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
184
                                           persistable=True, force_cpu=True, name='new_var')
185
    """
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
203 204
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
205 206 207 208 209
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
210 211 212
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
213

Q
Qiao Longfei 已提交
214 215 216
    return var


217
def cast(x, dtype):
Y
Yu Yang 已提交
218
    """
219 220 221
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
222 223

    Args:
224 225 226
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
227
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
228 229

    Returns:
230
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
231 232 233

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
234

235
            import paddle.fluid as fluid
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
258
    """
259 260
    check_variable_and_dtype(
        x, 'x',
261 262
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
263 264 265 266 267 268
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
269
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


279
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
280
    """
281 282
    **Concat**

283
    This OP concatenates the input along the axis.
284 285

    Args:
286 287
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
288
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
289 290 291 292 293
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
294 295

    Returns:
296
        Variable: A Tensor with the same data type as input's.
297 298 299

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
300

301
            import paddle.fluid as fluid
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325 326

    if in_dygraph_mode():
S
songyouwei 已提交
327 328 329 330 331
        if isinstance(axis, Variable):
            axis = axis.numpy()
            assert axis.shape == (
                1, ), "axis of type Variable should have shape [1]"
            axis = axis[0]
332
        return core.ops.concat(input, 'axis', axis)
333

334 335 336 337 338
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
339
    for id, x in enumerate(input):
340 341
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
342 343
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
344

345
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
346
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
370 371 372
    return out


G
Guo Sheng 已提交
373
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
374
    """
G
Guo Sheng 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
425 426

    Args:
G
Guo Sheng 已提交
427 428 429 430 431 432 433
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
434 435

    Returns:
G
Guo Sheng 已提交
436 437 438
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
439 440 441 442

    Examples:
        .. code-block:: python

443
            import paddle.fluid as fluid
444
            import numpy as np
G
Guo Sheng 已提交
445 446 447 448 449 450 451
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
452
    """
453 454 455 456 457 458 459 460 461 462 463
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

464 465 466 467 468
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
469
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
470 471 472
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
473
        type='tensor_array_to_tensor',
L
li099 已提交
474 475 476
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
477 478
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
479 480 481
    return out, out_index


482
def sums(input, out=None):
F
fengjiayi 已提交
483
    """
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
505 506

    Args:
507 508 509 510
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
511 512

    Returns:
513 514
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
515 516

    Examples:
F
fengjiayi 已提交
517
        .. code-block:: python
K
kavyasrinet 已提交
518

519 520 521 522 523 524 525 526 527
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
528

529 530
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
531
    """
532 533 534 535 536 537 538 539 540
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
541 542
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
543 544
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
545 546 547 548
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
549 550 551 552 553
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
554 555 556
    return out


F
fengjiayi 已提交
557
def assign(input, output=None):
558
    """
559
    The OP copies the :attr:`input` to the :attr:`output`.
560

561 562 563 564 565
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
566 567

    Returns:
568
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
569 570 571

    Examples:
        .. code-block:: python
572

573
          import paddle.fluid as fluid
574 575 576 577 578 579
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
580
    """
Y
Yu Yang 已提交
581
    helper = LayerHelper('assign', **locals())
582
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
583
    if isinstance(input, Variable):
584 585 586
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
587 588 589
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
590
        helper.append_op(
R
robot 已提交
591
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
592 593
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
594 595 596 597
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
598
            value_name = "fp32_values"
599
            values = [float(v) for v in input.flat]
600
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
601
            value_name = "int32_values"
602
            values = [int(v) for v in input.flat]
603 604 605
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
606
        else:
607 608
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
609
                "the data type of 'input' must be bool, float32, int32 or int64, but "
610
                "received %s." % convert_dtype(dtype))
611 612 613
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
614 615 616
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
617 618 619 620 621 622
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
623
                value_name: values
X
xuwei06 已提交
624 625
            })

Y
Yu Yang 已提交
626 627 628
    return output


Q
QI JUN 已提交
629
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
630
    """
W
wangchaochaohu 已提交
631
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
632
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
633

T
tianshuo78520a 已提交
634
    The attribute `stop_gradient` of the created Tensor is set to True.
635 636

    Args:
637 638 639 640
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
641 642
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
W
wangchaochaohu 已提交
643 644 645
        value(float16|float32|float64|int32|int64|Variable): The constant value used to initialize 
            the Tensor to be created. If value is an Variable, it should be an 1-D Tensor.
        force_cpu(bool): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
646 647 648
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
649 650

    Returns:
W
wangchaochaohu 已提交
651 652 653 654 655
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
656 657 658 659

    Examples:
        .. code-block:: python

660
          import paddle.fluid as fluid
661 662 663
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
664
          # data1=[[5], [5]] data2=[[5], [5]]
665 666 667 668 669 670 671 672

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
673 674 675 676
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
677
    """
W
wangchaochaohu 已提交
678 679 680 681
    inputs = {}
    attrs = {'force_cpu': force_cpu}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value
682
    else:
W
wangchaochaohu 已提交
683 684 685 686 687
        attrs['value'] = float(value)
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
688 689 690

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
S
songyouwei 已提交
691 692 693
            shape = list(
                map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
                    shape))
694
        else:
S
songyouwei 已提交
695
            shape = list(shape.numpy().astype(int))
696 697
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
698 699 700 701 702 703 704

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

705 706
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
707 708
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
709 710 711
        out.stop_gradient = True
        return out

712
    check_dtype(dtype, 'dtype',
713 714 715
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
716 717 718 719 720 721 722 723
    if isinstance(shape, Variable):
        check_variable_and_dtype(shape, 'shape', ['int32', 'int64'],
                                 'fill_constant')
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
W
wangchaochaohu 已提交
724 725 726 727 728 729
    inputs = utils._get_shape_tensor_inputs(
        inputs=inputs,
        helper=helper,
        attrs=attrs,
        shape=shape,
        op_type='fill_constant')
L
liym27 已提交
730

Y
Yu Yang 已提交
731
    if out is None:
X
Xin Pan 已提交
732
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
733
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
734 735
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
736
        inputs=inputs,
Y
Yu Yang 已提交
737
        outputs={'Out': [out]},
L
liym27 已提交
738
        attrs=attrs,
M
minqiyang 已提交
739
        stop_gradient=True)
Y
Yu Yang 已提交
740 741 742 743
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
744
@templatedoc()
Y
Yu Yang 已提交
745 746 747 748 749
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
750 751
                                  output_dim_idx=0,
                                  force_cpu=False):
752
    """
T
tianshuo78520a 已提交
753
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
754 755 756 757
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
758 759

    Args:
W
wangchaochaohu 已提交
760 761 762 763 764 765 766 767 768 769 770
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
771
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
772 773

    Returns:
W
wangchaochaohu 已提交
774
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
775 776 777 778 779

    Examples:

        .. code-block:: python

780
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
781
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
782
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
783
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
784

785
    """
Y
Yu Yang 已提交
786
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
787
    out = helper.create_variable_for_type_inference(dtype=dtype)
788 789 790 791 792 793
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
794
        'force_cpu': force_cpu
795 796 797 798 799
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
800 801 802 803
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
804
        attrs=attrs)
Y
Yu Yang 已提交
805 806 807 808
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
809 810 811 812
def argmin(x, axis=0):
    """
    **argmin**

813 814
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
815 816

    Args:
817 818 819 820 821
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
822

S
sneaxiy 已提交
823
    Returns:
824
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
825

S
sneaxiy 已提交
826 827
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
828

829
            import paddle.fluid as fluid
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
857
    """
858 859 860
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
861
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
862
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
863 864 865 866 867
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
868
    out.stop_gradient = True
S
sneaxiy 已提交
869 870 871 872 873 874 875
    return out


def argmax(x, axis=0):
    """
    **argmax**

876 877
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
878 879

    Args:
880 881 882 883 884
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
885

S
sneaxiy 已提交
886
    Returns:
887
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
888

S
sneaxiy 已提交
889 890
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
891

892
            import paddle.fluid as fluid
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
920
    """
921 922 923
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
924
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
925
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
926 927 928 929 930
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
931
    out.stop_gradient = True
S
sneaxiy 已提交
932 933 934
    return out


935
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
936
    """
937 938 939
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
940 941

    Args:
942 943 944 945 946
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
947 948 949
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
950 951 952
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
953 954

    Returns:
955 956 957
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
958 959 960 961

    Examples:
        .. code-block:: python

962
            import paddle.fluid as fluid
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1004
    """
1005 1006 1007
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1008
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1009 1010 1011 1012
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1013 1014 1015 1016
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1017
                 'Indices': ids},
1018 1019
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1020 1021 1022
    return out, ids


Y
Yang Yu 已提交
1023
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1024
    """
1025 1026
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1027

1028 1029 1030 1031 1032 1033 1034
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1035 1036

    Returns:
1037
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1038 1039 1040 1041

    Examples:
        .. code-block:: python

1042
          import paddle.fluid as fluid
1043
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
1044
    """
1045 1046 1047 1048
    check_type(shape, 'shape', (list, tuple), 'ones')
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'ones')
C
chengduozh 已提交
1049 1050
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
1051 1052 1053
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
1054
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1055
    """
1056 1057
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1058

1059 1060 1061 1062 1063 1064 1065
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1066 1067

    Returns:
1068
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1069 1070 1071 1072

    Examples:
        .. code-block:: python

1073
          import paddle.fluid as fluid
1074
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
1075
    """
1076
    check_type(shape, 'shape', (list, tuple), 'zeros')
1077 1078 1079
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
1080
    return fill_constant(value=0.0, **locals())
1081 1082


F
fengjiayi 已提交
1083 1084
def reverse(x, axis):
    """
1085
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1086

1087 1088 1089 1090 1091
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
1092 1093

    Returns:
1094
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1095 1096 1097 1098

    Examples:
        .. code-block:: python

1099
          import paddle.fluid as fluid
1100 1101 1102 1103
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1104 1105 1106 1107
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1108
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1109 1110
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1111
        inputs={'X': x},
F
fengjiayi 已提交
1112 1113 1114 1115 1116
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1117 1118 1119 1120 1121 1122 1123
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1124 1125 1126
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1142 1143
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1144
        file_path(str): The file path where variables will be saved.
1145
        overwrite(bool): Whether or not cover the given file when it has already
1146 1147
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1148 1149 1150 1151 1152 1153 1154 1155

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1156
            import paddle.fluid as fluid
1157 1158 1159 1160 1161 1162 1163
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1176
    Loads a list of variable from a single file.
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1188 1189 1190 1191 1192 1193 1194


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1195
       x (Variable): The Tensor/LoDTensor to be checked.
1196 1197

    Returns:
L
liu zhengxi 已提交
1198
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1199 1200 1201 1202 1203 1204 1205 1206
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1207
    """
1208
    check_type(x, 'x', (Variable), 'has_inf')
1209
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1210
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1211 1212 1213 1214 1215 1216 1217 1218 1219
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1220
       x (Variable): The Tensor/LoDTensor to be checked.
1221 1222

    Returns:
L
liu zhengxi 已提交
1223
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1224 1225 1226 1227 1228 1229 1230 1231
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1232
    """
1233
    check_type(x, 'x', (Variable), 'has_nan')
1234
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1235
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1250 1251 1252 1253 1254

    Examples:

        .. code-block:: python

1255
            import paddle.fluid as fluid
1256 1257 1258
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1259
            out = fluid.layers.isfinite(var)
1260
    """
1261 1262
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1263
    helper = LayerHelper("isfinite", **locals())
1264

1265
    out = helper.create_variable_for_type_inference(dtype='bool')
1266 1267
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1277 1278 1279 1280
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1281
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1282 1283 1284
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1285
                                  distance between two adjacent values, out[i+1] - out[i].
1286
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1287

L
Liufang Sang 已提交
1288 1289 1290
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1291 1292 1293 1294 1295

    examples:

        .. code-block:: python

1296
             import paddle.fluid as fluid
W
whs 已提交
1297 1298 1299 1300 1301
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1302 1303 1304 1305
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1306 1307
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1308 1309 1310 1311 1312
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1313 1314
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1315 1316 1317
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1318 1319
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1320 1321
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1331
    out.stop_gradient = True
W
whs 已提交
1332
    return out
Z
zhoukunsheng 已提交
1333 1334


Z
zhoukunsheng 已提交
1335 1336
def linspace(start, stop, num, dtype):
    """
1337
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1338 1339

    Args:
1340 1341 1342 1343 1344 1345 1346
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1347 1348

    Returns:
1349 1350 1351
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1352

Z
zhoukunsheng 已提交
1353
    Examples:
Z
zhoukunsheng 已提交
1354 1355
        .. code-block:: python

1356
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1357 1358
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1359 1360 1361 1362

    """
    helper = LayerHelper("linspace", **locals())

1363 1364 1365 1366
    check_type(start, 'start', (Variable, float, int), linspace)
    check_type(stop, 'stop', (Variable, float, int), linspace)
    check_type(num, 'num', (Variable, float, int), linspace)

Z
zhoukunsheng 已提交
1367 1368
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1369 1370 1371 1372
    else:
        check_variable_and_dtype(start, "start", ["float32", "float64"],
                                 "linspace")

Z
zhoukunsheng 已提交
1373 1374
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
1375 1376 1377
    else:
        check_variable_and_dtype(stop, "stop", ["float32", "float64"],
                                 "linspace")
Z
zhoukunsheng 已提交
1378 1379
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1380 1381
    else:
        check_variable_and_dtype(num, "num", ["int32"], "linspace")
Z
zhoukunsheng 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1392 1393


Z
zhoukunsheng 已提交
1394 1395
def zeros_like(x, out=None):
    """
1396
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1397 1398 1399
    with `x`.

    Args:
1400 1401 1402
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
T
tianshuo78520a 已提交
1403
            The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1404 1405

    Returns:
1406 1407
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1408 1409 1410 1411

    Examples:
        .. code-block:: python

1412
          import paddle.fluid as fluid
1413
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1414 1415
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1416 1417
    """

1418 1419
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1420 1421 1422
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1423 1424 1425 1426 1427
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')

Z
zhoukunsheng 已提交
1428 1429 1430 1431
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1432 1433 1434 1435


def diag(diagonal):
    """
1436
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1437 1438

    Args:
1439 1440
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1441 1442

    Returns:
1443 1444
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1445 1446 1447 1448 1449 1450 1451

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1452 1453 1454

          import paddle.fluid as fluid
          import numpy as np
1455 1456 1457
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1458 1459

    """
1460 1461 1462
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1475 1476


1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1489 1490
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1491 1492

    Returns:
1493
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1494 1495 1496 1497 1498

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1499 1500
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1501
          #  [0, 1, 0]
1502 1503
          #  [0, 0, 1]]

1504
          data = fluid.layers.eye(2, 3, dtype='int32')
1505
          # [[1, 0, 0]
1506
          #  [0, 1, 0]]
1507 1508

          data = fluid.layers.eye(2, batch_shape=[3])
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1561
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1572 1573
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1574 1575 1576 1577

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1578 1579 1580 1581
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1582 1583 1584 1585 1586 1587
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653


@templatedoc(op_type="kron")
def kron(x, y, out=None, name=None):
    """${comment}

    Args:
        x (Variable): the fist operand of kron op, data type: float16, float32, 
            float64, int32 or int64.
        y (Variable): the second operand of kron op, data type: float16, 
            float32, float64, int32 or int64. Its data type should be the same 
            with x.
        out (Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of 
            operation. If out is None, a new Varibale will be create to store 
            the result. Defaults to None.
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property.  For more information, please 
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
        
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = fluid.layers.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        check_variable_and_dtype(
            out, 'out', ['float16', 'float32', 'float64', 'int32', 'int64'],
            'kron')
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out