mkldnn_reuse.h 40.8 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

23
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
24
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
25
#include "paddle/fluid/framework/operator.h"
26
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
27 28 29 30 31 32
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

33 34
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
35
using user_function = std::function<std::shared_ptr<float>(const float*)>;
36
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
class MKLDNNHandlerNoCachingT {
 public:
  MKLDNNHandlerNoCachingT(mkldnn::engine engine, platform::Place cpu_place)
      : engine_(engine), place_(cpu_place), fwd_pd_(nullptr), bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
    return std::make_shared<TForward>(*fwd_pd_);
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
    return std::make_shared<TBackward>(*bwd_pd_);
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_, platform::errors::Unavailable("BWD_PD should be set when "
                                                 "getting BWD prim ."));
    return std::make_shared<TBackward_params>(*bwd_w_pd_);
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(fwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr);
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc());
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data));
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_desc(),
                                            to_void_cast<T>(ptr));
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr);
  }

  // Buffer of given Tensor is used for oneDNN computation
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            ptr);
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc());
  }

 protected:
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
    CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
    bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc =
        typename TBackward_params::desc(std::forward<Args>(args)...);
    bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, void* ptr) {
    return std::make_shared<mkldnn::memory>(md, engine_, ptr);
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md) {
    return std::make_shared<mkldnn::memory>(md, engine_);
  }

  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p) {
    auto reorder_p =
        std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    platform::RecordEvent record_reorder("int_reorder",
                                         platform::EventRole::kUniqueOp);
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  template <typename F = T>
  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
210
      bool is_persistent = false,
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
    std::shared_ptr<mkldnn::memory> target_memory_p;
    if (custom_reorder_func) {
      auto reordered_data =
          custom_reorder_func(reinterpret_cast<const F*>(ptr));
      ptr = reinterpret_cast<void*>(reordered_data.get());
    }
    auto user_memory_p = std::make_shared<dnnl::memory>(user_md, engine_, ptr);
    if (user_md != target_md) {
      target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
      auto reorder_p =
          std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
    } else {
      target_memory_p = user_memory_p;
    }
    return target_memory_p;
  }

  mkldnn::engine engine_;
  platform::Place place_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

243
template <typename T, typename TForward,
244 245
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
246 247 248 249 250 251 252 253
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
254
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
255
        fwd_pd_(nullptr),
256 257 258
        bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
259

A
Adam 已提交
260
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
261
    const std::string key_p = key_ + "@fwd_p";
262 263 264
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
265
      forward_p = std::make_shared<TForward>(*fwd_pd_);
266 267 268 269 270
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
271
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
272
    const std::string key_p = key_ + "@bwd_p";
273 274 275
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
276
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
277 278 279 280 281
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

282 283 284 285 286 287
  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_, platform::errors::Unavailable(
288
                                             "BWD_PD should be set when "
289 290 291 292 293 294 295 296
                                             "getting BWD prim witk key: %s .",
                                             key_p));
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

297 298 299
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
300 301
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
302 303
  }

304
  template <typename T_out = T>
305
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
306 307
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
A
Adam 已提交
308
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
309 310 311
                                            "@dst_mem_p");
  }

312 313 314 315 316
  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

317
  template <typename T_out = T>
318 319
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
320 321 322 323
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
324 325 326 327 328
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
329 330
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
331 332 333 334
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
335 336 337 338
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
339 340
  }

341 342 343 344 345 346
  // Buffer of given Tensor is used for oneDNN computation
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
347
            "BWD_W_PD should be set when getting BWD grad of weights."));
348 349 350 351 352 353 354 355 356 357 358
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), ptr,
                                            "@diff_wei_mem_p");
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
359
            "BWD_W_PD should be set when getting BWD grad of weights."));
360 361 362 363
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

364
 protected:
365
  bool isCached() {
366 367 368 369 370 371 372
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

373
  bool isBwdCached() {
374
    const std::string key_pd = key_ + "@bwd_pd";
375 376 377
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

378 379 380 381 382 383 384 385 386 387 388 389
    if (bwd_pd_ == nullptr) {
      return false;
    } else {
      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
          fwd_pd_, platform::errors::Unavailable(
                       "Error: FWD PD should be set when BWD PD is cached."));
      return true;
    }
390 391
  }

392 393 394 395 396 397
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
398 399 400 401 402 403 404 405 406 407 408
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

430 431
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
432
    // fwd_pd_ is set during grad by calling
433
    // AcquireForwardPrimitiveDescriptor
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

449
  template <typename... Args>
450
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
451
    // fwd_pd_ is set during grad by calling
452
    // AcquireForwardPrimitiveDescriptor
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

470 471 472 473 474 475
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      const std::string& suffix) {
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(key_ + suffix));
  }

476
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
477
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
478
    const auto local_key = key_ + suffix;
479 480 481
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
482
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
483 484 485 486 487 488 489
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

490 491 492 493 494 495 496 497 498 499 500 501
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

502
  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
503 504 505
                      const std::shared_ptr<mkldnn::memory>& target_memory_p) {
    auto reorder_p =
        std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
506

507
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
508 509 510

    platform::RecordEvent record_reorder("int_reorder",
                                         platform::EventRole::kUniqueOp);
511 512 513 514 515
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

516
  template <typename F = T>
517 518 519
  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
520
      const std::string& suffix, bool is_persistent = false,
A
Adam Osewski 已提交
521 522
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {},
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
523 524 525 526 527 528 529 530
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
531 532 533 534 535 536
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
537 538 539 540
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
A
Adam Osewski 已提交
541 542 543 544 545 546 547 548 549 550 551
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
          reorder_pdesc = dnnl::reorder::primitive_desc(*user_memory_p,
                                                        *target_memory_p, attr);
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
552 553
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

554
        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
555 556
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
557 558 559 560 561 562 563 564 565
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
566
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
567 568 569 570 571

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

572 573
      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
574 575 576
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
577 578
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
579 580 581 582 583 584 585 586
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

587 588 589 590 591 592
  std::shared_ptr<mkldnn::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(local_key));
  }

593 594 595 596
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_common_;
597
  std::string key_;
598 599
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
600
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
601 602
};

603
template <typename T>
604 605
class BinaryMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
606
 public:
607
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
608 609
                      const mkldnn::engine engine, platform::Place cpu_place,
                      const Tensor* x, const Tensor* y, Tensor* z,
610 611
                      float scale_x, float scale_y, float scale_z,
                      const dnnl::post_ops& post_ops = dnnl::post_ops())
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Wrong layout set for X tensor. Expected: %d (kMKLDNN), Actual: %d",
            DataLayout::kMKLDNN, x->layout()));
    PADDLE_ENFORCE_NE(x->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for X tensor : %d (undef)",
                          static_cast<unsigned int>(x->format())));

    PADDLE_ENFORCE_EQ(
        y->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Wrong layout set for Y tensor. Expected: %d (kMKLDNN), Actual: %d",
            DataLayout::kMKLDNN, y->layout()));
    PADDLE_ENFORCE_NE(y->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Y tensor : %d (undef)",
                          static_cast<unsigned int>(y->format())));

    const auto src_x_tz = framework::vectorize(x->dims());
    const auto src_y_tz = framework::vectorize(y->dims());
    // if output tensor(z) is nullptr then we are computing into oneDNN
    // managed buffer
    auto rankdiff = x->dims().size() - y->dims().size();
    const auto dst_tz = (z == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
                                       : framework::vectorize(z->dims());

    auto src0_md = dnnl::memory::desc(
        src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
    auto src1_md = dnnl::memory::desc(
        src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
    if (rankdiff > 0) {  // Second input is of smaller rank than first
      std::vector<int64_t> dims1_ex(rankdiff, 1);
      dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                      src_y_tz.begin(), src_y_tz.end());
      src1_md = src1_md.reshape(dims1_ex);
    } else if (rankdiff < 0) {  // First input is of smaller than second
      std::vector<int64_t> dims0_ex(-rankdiff, 1);
      dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
                      src_x_tz.begin(), src_x_tz.end());
      src0_md = src0_md.reshape(dims0_ex);
655
    }
656 657 658 659
    const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                     MKLDNNMemoryFormat::any);

    auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
660 661
    attributes.set_post_ops(post_ops);

662 663
    this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
                                            dst_md);
664 665 666 667
  }
  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
668 669
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(),
                                            to_void_cast<T>(input_data));
670
  }
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

 private:
  static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op,
                                                      float scale_x,
                                                      float scale_y,
                                                      float scale_z) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_z / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
    return attributes;
  }
703 704
};

705 706
template <typename T>
class BroadcastDataMKLDNNHandler
707
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
708 709 710
 public:
  BroadcastDataMKLDNNHandler(const dnnl::algorithm algo,
                             const mkldnn::engine engine,
711 712
                             platform::Place cpu_place, const Tensor* out,
                             const Tensor* x, float scale_x, float scale_y,
713
                             const std::vector<int64_t>& input_dims)
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor."));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor."));

    const auto src0_tz = framework::vectorize(out->dims());

    const auto src0_md = dnnl::memory::desc(
        src0_tz, platform::MKLDNNGetDataType<T>(), out->format());
    const auto src1_md = dnnl::memory::desc(
        input_dims, platform::MKLDNNGetDataType<T>(), out->format());

    dnnl::primitive_attr attributes;
    attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
    attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

    this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
                                            src0_md);
735 736
  }

737 738 739 740 741
  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
    T_out* ptr = output->mutable_data<T_out>(
        this->place_, this->fwd_pd_->dst_desc().get_size());
    memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
742
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
743 744 745
  }
};

746 747
template <typename T>
class ReductionMKLDNNHandler
748
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction> {
749 750
 public:
  ReductionMKLDNNHandler(const dnnl::algorithm algo, const float p,
751 752
                         const float eps, const mkldnn::engine engine,
                         platform::Place cpu_place, const Tensor* x,
753 754
                         const Tensor* y, std::vector<int64_t> y_tz,
                         const dnnl::primitive_attr& attr = NULL)
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction>(engine,
                                                              cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor."));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor."));

    const auto x_tz = framework::vectorize(x->dims());

    const auto x_md =
        dnnl::memory::desc(x_tz, platform::MKLDNNGetDataType<T>(), x->format());
    const auto y_md =
        memory::desc(y_tz, platform::MKLDNNGetDataType<T>(), x->format());

771 772 773 774
    if (attr)
      this->AcquireForwardPrimitiveDescriptor(attr, algo, x_md, y_md, p, eps);
    else
      this->AcquireForwardPrimitiveDescriptor(algo, x_md, y_md, p, eps);
775 776 777
  }
};

778
template <typename T>
779
class ActivationMKLDNNHandler
780 781
    : public MKLDNNHandlerNoCachingT<T, mkldnn::eltwise_forward,
                                     mkldnn::eltwise_backward> {
782
 public:
783 784
  ActivationMKLDNNHandler(mkldnn::algorithm algorithm,
                          const framework::ExecutionContext& ctx,
785 786 787 788 789 790 791
                          const mkldnn::engine engine, Place cpu_place,
                          const framework::Tensor* in_x)
      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::eltwise_forward,
                                          mkldnn::eltwise_backward>(engine,
                                                                    cpu_place) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;
792 793

    if (ctx.Type() == "scale") {
794 795
      bool bias_after_scale = ctx.Attr<bool>("bias_after_scale");
      auto* scale_tensor = ctx.Input<Tensor>("ScaleTensor");
796 797 798
      alpha = (scale_tensor == nullptr)
                  ? ctx.Attr<float>("scale")
                  : static_cast<float>(*(scale_tensor->data<T>()));
799 800 801 802 803
      beta = ctx.Attr<float>("bias");
      // if bias_after_scale == true
      //   out = scale*X + bias
      // else
      //   out = scale*(X + bias) = scale*X + scale*bias
804 805 806 807 808 809 810 811
      if (!bias_after_scale) {
        beta *= alpha;
      }
    } else if (ctx.Type() == "clip") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
812 813 814 815 816 817
    } else {
      // paddle uses beta but mkldnn uses alpha for swish
      if (algorithm == mkldnn::algorithm::eltwise_swish) {
        std::swap(alpha, beta);
      } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
        alpha = ctx.Attr<float>("threshold");
818
      }
819
    }
820

821 822 823 824 825
    PADDLE_ENFORCE(in_x->dims().size() >= 1 || in_x->dims().size() <= 6,
                   platform::errors::Unimplemented(
                       "Input dimension size can be 1, 2, 3, 4, "
                       "5, or 6, but now the dimension size is",
                       in_x->dims().size()));
826

827 828 829 830
    auto src_tz = framework::vectorize<int64_t>(in_x->dims());
    auto src_fmt = src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
    auto md =
        mkldnn::memory::desc(src_tz, platform::MKLDNNGetDataType<T>(), src_fmt);
831

832 833
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, md, alpha, beta);
834 835 836 837
  }

  ActivationMKLDNNHandler(mkldnn::algorithm algorithm,
                          const framework::ExecutionContext& ctx,
838 839 840 841 842 843 844 845 846 847 848 849 850 851
                          const mkldnn::engine engine, Place cpu_place,
                          const framework::Tensor* in_x, const Tensor* out_grad)
      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::eltwise_forward,
                                          mkldnn::eltwise_backward>(engine,
                                                                    cpu_place) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;

    // paddle uses beta but mkldnn uses alpha for swish
    if (algorithm == mkldnn::algorithm::eltwise_swish) {
      std::swap(alpha, beta);
    } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
      alpha = ctx.Attr<float>("threshold");
    }
852

853 854 855 856 857 858 859
    if (ctx.Type() == "clip_grad") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
    }

860
    auto diff_dst_tz = framework::vectorize<int64_t>(out_grad->dims());
861

862 863 864 865
    auto src_fmt =
        diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
    auto diff_fmt =
        diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : out_grad->format();
866

867 868 869 870 871
    auto dims = framework::vectorize(in_x->dims());
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), src_fmt);
872

873 874 875 876
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, src_md, alpha, beta);
    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
877
  }
878

879 880 881
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
882
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
883
                                            to_void_cast<T>(input_data));
884 885 886
  }
};

887
class ReorderMKLDNNHandler {
888
 public:
A
Adam 已提交
889
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
890
                       framework::proto::VarType::Type vtype,
891 892
                       mkldnn::memory::data_type dtype, mkldnn::engine engine)
      : dims_(dims),
893
        vtype_(vtype),
894 895
        vtype_dst_(vtype),
        dtype_(dtype),
896 897
        dtype_dst_(dtype),
        engine_(engine) {}
898 899 900 901 902 903

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       framework::proto::VarType::Type vtype_dst,
                       mkldnn::memory::data_type dtype_dst,
904 905
                       mkldnn::engine engine)
      : dims_(dims),
906 907 908
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
909 910
        dtype_dst_(dtype_dst),
        engine_(engine) {}
911 912

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
913
      const MKLDNNMemoryFormat& fmt, void* ptr) {
914 915
    auto md = mkldnn::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<mkldnn::memory>(md, engine_, ptr);
916 917
  }

918
  std::shared_ptr<mkldnn::memory> AcquireSubmemory(
919
      const std::vector<int64_t>& dims, const std::vector<int64_t>& offset,
920 921 922 923
      const std::shared_ptr<mkldnn::memory>& mem_p) {
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
    auto sub_mem_p = std::make_shared<mkldnn::memory>(sub_md, engine_,
                                                      mem_p->get_data_handle());
924 925 926
    return sub_mem_p;
  }

927
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
928
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
929
      platform::Place place) {
930 931 932
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
    auto dst_data = output->mutable_data(place, vtype_dst_, dst_md.get_size());
    return std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
933 934
  }

935 936
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      framework::Tensor* output, const std::vector<int64_t>& dims,
937 938 939 940
      const MKLDNNMemoryFormat& fmt, platform::Place place) {
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
    auto dst_data = output->mutable_data(place, vtype_dst_, dst_md.get_size());
    return std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
941 942
  }

943 944 945
  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
946
    return std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
947 948 949
  }

 private:
A
Adam 已提交
950
  std::vector<int64_t> dims_;
951 952
  framework::proto::VarType::Type vtype_, vtype_dst_;
  mkldnn::memory::data_type dtype_, dtype_dst_;
953
  mkldnn::engine engine_;
954 955
};

956 957 958
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
959 960
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
961 962
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
963 964
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
965
  MKLDNNMemoryFormat dst_fmt;
966

G
GaoWei8 已提交
967 968 969 970
  PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument(
                                     "Dst memory for quantization can not have "
                                     "dims > 5. But received dst_dims is %d.",
                                     dst_dims));
971
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
972

A
Adam 已提交
973
  auto tmp_dst_md = platform::MKLDNNMemDesc(
974
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
975
                    framework::DataTypeTrait<T>::DataType()),
976
      dst_fmt);
A
Adam 已提交
977 978 979
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
980
}
A
Adam Osewski 已提交
981

J
Jacek Czaja 已提交
982 983
}  // namespace platform
}  // namespace paddle