mkldnn_reuse.h 62.5 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27 28 29 30 31
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

32 33
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
34
using user_function = std::function<std::shared_ptr<float>(const float*)>;
35
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
class MKLDNNHandlerNoCachingT {
 public:
  MKLDNNHandlerNoCachingT(mkldnn::engine engine, platform::Place cpu_place)
      : engine_(engine), place_(cpu_place), fwd_pd_(nullptr), bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
    return std::make_shared<TForward>(*fwd_pd_);
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
    return std::make_shared<TBackward>(*bwd_pd_);
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_, platform::errors::Unavailable("BWD_PD should be set when "
                                                 "getting BWD prim ."));
    return std::make_shared<TBackward_params>(*bwd_w_pd_);
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(fwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr);
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc());
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data));
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_desc(),
                                            to_void_cast<T>(ptr));
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr);
  }

  // Buffer of given Tensor is used for oneDNN computation
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            ptr);
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc());
  }

 protected:
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
    CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
    bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc =
        typename TBackward_params::desc(std::forward<Args>(args)...);
    bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, void* ptr) {
    return std::make_shared<mkldnn::memory>(md, engine_, ptr);
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md) {
    return std::make_shared<mkldnn::memory>(md, engine_);
  }

  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p) {
    auto reorder_p =
        std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    platform::RecordEvent record_reorder("int_reorder",
                                         platform::EventRole::kUniqueOp);
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  template <typename F = T>
  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
      const std::string& suffix, bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
    std::shared_ptr<mkldnn::memory> target_memory_p;
    if (custom_reorder_func) {
      auto reordered_data =
          custom_reorder_func(reinterpret_cast<const F*>(ptr));
      ptr = reinterpret_cast<void*>(reordered_data.get());
    }
    auto user_memory_p = std::make_shared<dnnl::memory>(user_md, engine_, ptr);
    if (user_md != target_md) {
      target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
      auto reorder_p =
          std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
    } else {
      target_memory_p = user_memory_p;
    }
    return target_memory_p;
  }

  mkldnn::engine engine_;
  platform::Place place_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

242
template <typename T, typename TForward,
243 244
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
245 246 247 248 249 250 251 252
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
253
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
254
        fwd_pd_(nullptr),
255 256 257
        bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
258

A
Adam 已提交
259
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
260
    const std::string key_p = key_ + "@fwd_p";
261 262 263
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
264
      forward_p = std::make_shared<TForward>(*fwd_pd_);
265 266 267 268 269
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
270
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
271
    const std::string key_p = key_ + "@bwd_p";
272 273 274
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
275
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
276 277 278 279 280
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

281 282 283 284 285 286
  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_, platform::errors::Unavailable(
287
                                             "BWD_PD should be set when "
288 289 290 291 292 293 294 295
                                             "getting BWD prim witk key: %s .",
                                             key_p));
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

296 297 298
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
299 300
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
301 302
  }

303
  template <typename T_out = T>
304
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
305 306
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
A
Adam 已提交
307
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
308 309 310
                                            "@dst_mem_p");
  }

311 312 313 314 315
  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

316
  template <typename T_out = T>
317 318
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
319 320 321 322
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
323 324 325 326 327
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
328 329
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
330 331 332 333
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
334 335 336 337
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
338 339
  }

340 341 342 343 344 345
  // Buffer of given Tensor is used for oneDNN computation
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
346
            "BWD_W_PD should be set when getting BWD grad of weights."));
347 348 349 350 351 352 353 354 355 356 357
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), ptr,
                                            "@diff_wei_mem_p");
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
358
            "BWD_W_PD should be set when getting BWD grad of weights."));
359 360 361 362
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

363
 protected:
364
  bool isCached() {
365 366 367 368 369 370 371
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

372
  bool isBwdCached() {
373
    const std::string key_pd = key_ + "@bwd_pd";
374 375 376
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

377 378 379 380 381 382 383 384 385 386 387 388
    if (bwd_pd_ == nullptr) {
      return false;
    } else {
      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
          fwd_pd_, platform::errors::Unavailable(
                       "Error: FWD PD should be set when BWD PD is cached."));
      return true;
    }
389 390
  }

391 392 393 394 395 396
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
397 398 399 400 401 402 403 404 405 406 407
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

429 430
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
431
    // fwd_pd_ is set during grad by calling
432
    // AcquireForwardPrimitiveDescriptor
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

448
  template <typename... Args>
449
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
450
    // fwd_pd_ is set during grad by calling
451
    // AcquireForwardPrimitiveDescriptor
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

469 470 471 472 473 474
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      const std::string& suffix) {
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(key_ + suffix));
  }

475
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
476
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
477
    const auto local_key = key_ + suffix;
478 479 480
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
481
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
482 483 484 485 486 487 488
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

489 490 491 492 493 494 495 496 497 498 499 500
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

501 502 503 504 505 506 507 508 509 510 511 512 513 514
  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p,
                      const std::string& suffix) {
    const auto key_reorder_p = key_ + suffix + "reorder_p";

    auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
    }

515
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
516 517 518

    platform::RecordEvent record_reorder("int_reorder",
                                         platform::EventRole::kUniqueOp);
519 520 521 522 523
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

524
  template <typename F = T>
525 526 527
  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
528 529
      const std::string& suffix, bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
530 531 532 533 534 535 536 537
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
538 539 540 541 542 543
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
544 545 546 547 548 549 550 551
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
        auto reorder_p =
            std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

552
        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
553 554
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
555 556 557 558 559 560 561 562 563
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
564
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
565 566 567 568 569 570 571 572

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
573 574
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
575 576 577 578 579 580 581 582
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

583 584 585 586 587 588
  std::shared_ptr<mkldnn::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(local_key));
  }

589 590 591 592
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_common_;
593
  std::string key_;
594 595
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
596
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
597 598 599
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
600 601 602 603
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
604 605
      : dev_ctx_(dev_ctx),
        engine_(engine),
606 607 608
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
J
Jacek Czaja 已提交
609 610 611 612 613 614 615 616 617 618 619

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
620
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
621
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
622
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
623 624
  }

A
Adam 已提交
625
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
626
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
627
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
628 629 630
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
631
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
632 633 634 635
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
636
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
637 638 639 640 641 642 643
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

644 645 646 647 648 649 650 651 652 653 654 655
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
673
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
674 675 676 677 678 679 680
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

681
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
682
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
683
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
684 685 686 687 688 689 690
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
691
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
692 693 694 695 696 697 698
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
716
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
717 718
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
A
Adam 已提交
719 720 721
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
722 723 724 725 726 727
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
728 729
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
730 731 732
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
733 734
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
735 736 737 738 739 740
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
741

742
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
743

J
Jacek Czaja 已提交
744 745
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
746 747 748
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
749 750 751 752 753
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
754 755 756
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
757
        } else {
A
Adam 已提交
758 759 760
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
761
        }
A
Adam 已提交
762 763
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
764
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
765

766 767
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
A
Adam 已提交
768 769 770
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
771 772 773 774 775 776 777
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
778 779
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
A
Adam 已提交
780 781 782
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
783 784 785 786 787 788 789 790
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
791
  std::string key_;
J
Jacek Czaja 已提交
792 793
};

794
template <typename T>
795 796
class BinaryMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
797
 public:
798
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
799 800
                      const mkldnn::engine engine, platform::Place cpu_place,
                      const Tensor* x, const Tensor* y, Tensor* z,
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
                      float scale_x, float scale_y, float scale_z)
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Wrong layout set for X tensor. Expected: %d (kMKLDNN), Actual: %d",
            DataLayout::kMKLDNN, x->layout()));
    PADDLE_ENFORCE_NE(x->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for X tensor : %d (undef)",
                          static_cast<unsigned int>(x->format())));

    PADDLE_ENFORCE_EQ(
        y->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Wrong layout set for Y tensor. Expected: %d (kMKLDNN), Actual: %d",
            DataLayout::kMKLDNN, y->layout()));
    PADDLE_ENFORCE_NE(y->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Y tensor : %d (undef)",
                          static_cast<unsigned int>(y->format())));

    const auto src_x_tz = framework::vectorize(x->dims());
    const auto src_y_tz = framework::vectorize(y->dims());
    // if output tensor(z) is nullptr then we are computing into oneDNN
    // managed buffer
    auto rankdiff = x->dims().size() - y->dims().size();
    const auto dst_tz = (z == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
                                       : framework::vectorize(z->dims());

    auto src0_md = dnnl::memory::desc(
        src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
    auto src1_md = dnnl::memory::desc(
        src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
    if (rankdiff > 0) {  // Second input is of smaller rank than first
      std::vector<int64_t> dims1_ex(rankdiff, 1);
      dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                      src_y_tz.begin(), src_y_tz.end());
      src1_md = src1_md.reshape(dims1_ex);
    } else if (rankdiff < 0) {  // First input is of smaller than second
      std::vector<int64_t> dims0_ex(-rankdiff, 1);
      dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
                      src_x_tz.begin(), src_x_tz.end());
      src0_md = src0_md.reshape(dims0_ex);
845
    }
846 847 848 849 850 851
    const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                     MKLDNNMemoryFormat::any);

    auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
    this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
                                            dst_md);
852 853 854 855 856
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
857 858
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(),
                                            to_void_cast<T>(input_data));
859
  }
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

 private:
  static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op,
                                                      float scale_x,
                                                      float scale_y,
                                                      float scale_z) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_z / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
    return attributes;
  }
892 893
};

894 895
template <typename T>
class BroadcastDataMKLDNNHandler
896
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
897 898 899
 public:
  BroadcastDataMKLDNNHandler(const dnnl::algorithm algo,
                             const mkldnn::engine engine,
900 901
                             platform::Place cpu_place, const Tensor* out,
                             const Tensor* x, float scale_x, float scale_y,
902
                             const std::vector<int64_t>& input_dims)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor."));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor."));

    const auto src0_tz = framework::vectorize(out->dims());

    const auto src0_md = dnnl::memory::desc(
        src0_tz, platform::MKLDNNGetDataType<T>(), out->format());
    const auto src1_md = dnnl::memory::desc(
        input_dims, platform::MKLDNNGetDataType<T>(), out->format());

    dnnl::primitive_attr attributes;
    attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
    attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

    this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
                                            src0_md);
924 925
  }

926 927 928 929 930 931
  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
    T_out* ptr = output->mutable_data<T_out>(
        this->place_, this->fwd_pd_->dst_desc().get_size());
    ;
    memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
932
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
933 934 935
  }
};

936 937
template <typename T>
class ReductionMKLDNNHandler
938
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction> {
939 940
 public:
  ReductionMKLDNNHandler(const dnnl::algorithm algo, const float p,
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
                         const float eps, const mkldnn::engine engine,
                         platform::Place cpu_place, const Tensor* x,
                         const Tensor* y, std::vector<int64_t> y_tz)
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction>(engine,
                                                              cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor."));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor."));

    const auto x_tz = framework::vectorize(x->dims());

    const auto x_md =
        dnnl::memory::desc(x_tz, platform::MKLDNNGetDataType<T>(), x->format());
    const auto y_md =
        memory::desc(y_tz, platform::MKLDNNGetDataType<T>(), x->format());

    this->AcquireForwardPrimitiveDescriptor(algo, x_md, y_md, p, eps);
961 962 963
  }
};

964
template <typename T>
965
class ActivationMKLDNNHandler
966 967
    : public MKLDNNHandlerNoCachingT<T, mkldnn::eltwise_forward,
                                     mkldnn::eltwise_backward> {
968
 public:
969 970
  ActivationMKLDNNHandler(mkldnn::algorithm algorithm,
                          const framework::ExecutionContext& ctx,
971 972 973 974 975 976 977
                          const mkldnn::engine engine, Place cpu_place,
                          const framework::Tensor* in_x)
      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::eltwise_forward,
                                          mkldnn::eltwise_backward>(engine,
                                                                    cpu_place) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;
978 979

    if (ctx.Type() == "scale") {
980 981 982 983 984 985 986 987 988
      bool bias_after_scale = ctx.Attr<bool>("bias_after_scale");
      auto* scale_tensor = ctx.Input<Tensor>("ScaleTensor");
      alpha = (scale_tensor == nullptr) ? ctx.Attr<float>("scale")
                                        : (float)*(scale_tensor->data<T>());
      beta = ctx.Attr<float>("bias");
      // if bias_after_scale == true
      //   out = scale*X + bias
      // else
      //   out = scale*(X + bias) = scale*X + scale*bias
989 990 991 992 993 994 995 996
      if (!bias_after_scale) {
        beta *= alpha;
      }
    } else if (ctx.Type() == "clip") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
997 998 999 1000 1001 1002
    } else {
      // paddle uses beta but mkldnn uses alpha for swish
      if (algorithm == mkldnn::algorithm::eltwise_swish) {
        std::swap(alpha, beta);
      } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
        alpha = ctx.Attr<float>("threshold");
1003
      }
1004
    }
1005

1006 1007 1008 1009 1010
    PADDLE_ENFORCE(in_x->dims().size() >= 1 || in_x->dims().size() <= 6,
                   platform::errors::Unimplemented(
                       "Input dimension size can be 1, 2, 3, 4, "
                       "5, or 6, but now the dimension size is",
                       in_x->dims().size()));
1011

1012 1013 1014 1015
    auto src_tz = framework::vectorize<int64_t>(in_x->dims());
    auto src_fmt = src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
    auto md =
        mkldnn::memory::desc(src_tz, platform::MKLDNNGetDataType<T>(), src_fmt);
1016

1017 1018
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, md, alpha, beta);
1019 1020 1021 1022
  }

  ActivationMKLDNNHandler(mkldnn::algorithm algorithm,
                          const framework::ExecutionContext& ctx,
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
                          const mkldnn::engine engine, Place cpu_place,
                          const framework::Tensor* in_x, const Tensor* out_grad)
      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::eltwise_forward,
                                          mkldnn::eltwise_backward>(engine,
                                                                    cpu_place) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;

    // paddle uses beta but mkldnn uses alpha for swish
    if (algorithm == mkldnn::algorithm::eltwise_swish) {
      std::swap(alpha, beta);
    } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
      alpha = ctx.Attr<float>("threshold");
    }
1037

1038 1039 1040 1041 1042 1043 1044
    if (ctx.Type() == "clip_grad") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
    }

1045
    auto diff_dst_tz = framework::vectorize<int64_t>(out_grad->dims());
1046

1047 1048 1049 1050
    auto src_fmt =
        diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
    auto diff_fmt =
        diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : out_grad->format();
1051

1052 1053 1054 1055 1056
    auto dims = framework::vectorize(in_x->dims());
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), src_fmt);
1057

1058 1059 1060 1061
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, src_md, alpha, beta);
    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
1062
  }
1063

1064 1065 1066
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
1067
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
1068
                                            to_void_cast<T>(input_data));
1069 1070 1071
  }
};

1072
class ReorderMKLDNNHandler {
1073
 public:
A
Adam 已提交
1074
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
1075
                       framework::proto::VarType::Type vtype,
1076 1077
                       mkldnn::memory::data_type dtype, mkldnn::engine engine)
      : dims_(dims),
1078
        vtype_(vtype),
1079 1080
        vtype_dst_(vtype),
        dtype_(dtype),
1081 1082
        dtype_dst_(dtype),
        engine_(engine) {}
1083 1084 1085 1086 1087 1088

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       framework::proto::VarType::Type vtype_dst,
                       mkldnn::memory::data_type dtype_dst,
1089 1090
                       mkldnn::engine engine)
      : dims_(dims),
1091 1092 1093
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
1094 1095
        dtype_dst_(dtype_dst),
        engine_(engine) {}
1096 1097

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
1098
      const MKLDNNMemoryFormat& fmt, void* ptr) {
1099 1100
    auto md = mkldnn::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<mkldnn::memory>(md, engine_, ptr);
1101 1102
  }

1103
  std::shared_ptr<mkldnn::memory> AcquireSubmemory(
1104
      const std::vector<int64_t>& dims, const std::vector<int64_t>& offset,
1105 1106 1107 1108
      const std::shared_ptr<mkldnn::memory>& mem_p) {
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
    auto sub_mem_p = std::make_shared<mkldnn::memory>(sub_md, engine_,
                                                      mem_p->get_data_handle());
1109 1110 1111
    return sub_mem_p;
  }

1112
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
1113
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
1114
      platform::Place place) {
1115 1116 1117
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
    auto dst_data = output->mutable_data(place, vtype_dst_, dst_md.get_size());
    return std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1118 1119
  }

1120 1121
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      framework::Tensor* output, const std::vector<int64_t>& dims,
1122 1123 1124 1125
      const MKLDNNMemoryFormat& fmt, platform::Place place) {
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
    auto dst_data = output->mutable_data(place, vtype_dst_, dst_md.get_size());
    return std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1126 1127
  }

1128 1129 1130
  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
1131
    return std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
1132 1133 1134
  }

 private:
A
Adam 已提交
1135
  std::vector<int64_t> dims_;
1136 1137
  framework::proto::VarType::Type vtype_, vtype_dst_;
  mkldnn::memory::data_type dtype_, dtype_dst_;
1138
  mkldnn::engine engine_;
1139 1140
};

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
1155 1156 1157
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
1158 1159 1160 1161
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

1162 1163 1164 1165 1166 1167 1168 1169 1170
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
1188
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
1189

1190
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
1191
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
1192 1193 1194
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
1195
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
1196 1197 1198
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
1199
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
1200 1201 1202 1203 1204
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1205 1206
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1207 1208 1209 1210 1211 1212 1213
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1214 1215
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1216 1217 1218 1219 1220 1221 1222
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
1223
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
1224 1225
  }

1226 1227 1228 1229 1230 1231
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_desc(), "@diff_weights_mem_p");
  }

J
Jacek Czaja 已提交
1232 1233 1234
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1235 1236
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1237 1238 1239 1240 1241 1242 1243
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1244 1245
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
1266 1267
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
1268 1269 1270
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
1271
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
1272 1273 1274 1275 1276 1277
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1278 1279
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1280 1281 1282 1283
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
1295 1296 1297
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
1298 1299
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
1300 1301
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
1302 1303 1304
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
1305 1306 1307 1308
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
1309 1310 1311 1312
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
1313 1314
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
1315
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
1316 1317
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
1318 1319
  }

1320
  mkldnn::primitive_attr CreatePostOps(
1321 1322
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
1323
      float sum_scale = 1.0f) const {
1324 1325
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
1326 1327 1328 1329
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
1330 1331 1332 1333 1334 1335
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1336
      post_operations.append_sum(sum_scale);
1337 1338 1339
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
1340
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
1341 1342
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
1343
                                     fuse_alpha, fuse_beta);
1344
    } else if (fuse_activation == "relu6") {
1345 1346 1347
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1348
                                     fuse_alpha, fuse_beta);
1349 1350 1351 1352
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
1353
    }
1354 1355 1356 1357 1358 1359 1360
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
1361
      paddle::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
1362
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
1363
      const std::vector<int64_t>& dilations,
A
Adam 已提交
1364
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
1365 1366
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1367 1368
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1369 1370 1371
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
1372
    const std::string key_conv_pd = key_ + "@conv_pd";
1373

1374
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1375 1376
        dev_ctx_.GetBlob(key_conv_pd));

1377
    if (conv_pd_ == nullptr) {
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
      mkldnn::memory::dims stride_dims = strides;
      mkldnn::memory::dims dilations_dims = dilations;
      auto mkldnn_paddings = ToMkldnnPadding(paddings);

      auto conv_desc =
          bias ? typename forward_t::desc(
                     fwd_prop_kind, convolutional_algorithm<forward_t>::T, src,
                     weights, *bias, dst, stride_dims, dilations_dims,
                     mkldnn_paddings[0], mkldnn_paddings[1])
               : typename forward_t::desc(
                     fwd_prop_kind, convolutional_algorithm<forward_t>::T, src,
                     weights, dst, stride_dims, dilations_dims,
                     mkldnn_paddings[0], mkldnn_paddings[1]);

      mkldnn::primitive_attr conv_attr =
          CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                        fuse_residual_conn, output_shift_scale, sum_scale);

      conv_pd_.reset(
          new typename forward_t::primitive_desc(conv_desc, conv_attr, engine));
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
1400 1401 1402 1403 1404
    }

    return conv_pd_;
  }

A
Adam 已提交
1405
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1406 1407 1408 1409
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1410
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1411 1412 1413 1414 1415 1416

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1417
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1418 1419 1420 1421 1422
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1423 1424
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1425 1426 1427 1428 1429
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1430
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1431 1432 1433 1434
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1435
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
1472 1473 1474 1475
  PADDLE_ENFORCE_NOT_NULL(
      residual_param_data,
      platform::errors::PreconditionNotMet("Residual parameter is required for "
                                           "the DNNL conv+elementwise_add "
G
GaoWei8 已提交
1476
                                           "fusion, but now it is missing."));
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1497 1498 1499
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1500 1501
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1502 1503
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1504 1505
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1506
  MKLDNNMemoryFormat dst_fmt;
G
GaoWei8 已提交
1507 1508 1509 1510
  PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument(
                                     "Dst memory for quantization can not have "
                                     "dims > 5. But received dst_dims is %d.",
                                     dst_dims));
1511
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1512

A
Adam 已提交
1513
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1514
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1515
                    framework::DataTypeTrait<T>::DataType()),
1516
      dst_fmt);
A
Adam 已提交
1517 1518 1519
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1520
}
J
Jacek Czaja 已提交
1521 1522
}  // namespace platform
}  // namespace paddle