optimizer.py 264.1 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import six
19
import os
20
import logging
21
from collections import defaultdict
22

23
import paddle
Q
Qiao Longfei 已提交
24
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
25
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
26

27 28
from . import framework
from . import layers
29
from . import unique_name
30
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
31
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops
32 33 34
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
35
from .layers import ops
36
from .regularizer import append_regularization_ops
37
from .dygraph import base as imperative_base
38
from .dygraph import no_grad
39
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
40 41 42
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
43
from functools import cmp_to_key
44
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
45
from .. import compat as cpt
46

47
__all__ = [
48 49 50 51
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
52
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
53 54
    'LarsMomentumOptimizer', 'LambOptimizer', 'ExponentialMovingAverage',
    'PipelineOptimizer', 'LookaheadOptimizer', 'RecomputeOptimizer'
55
]
Q
Qiao Longfei 已提交
56 57 58 59 60 61


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
62 63
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
64 65
    """

66
    @imperative_base.no_grad
67 68 69 70
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
71
                 grad_clip=None,
72
                 name=None):
73
        # Because of the loop import, so place it in the function body
74
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
75 76
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
77
        self._name = name
L
lujun 已提交
78
        if framework.in_dygraph_mode():
79
            if not isinstance(learning_rate,
80
                              (float, LearningRateDecay, LRScheduler)):
M
minqiyang 已提交
81
                raise TypeError(
82
                    "learning rate should be float or LRScheduler, got %s here"
M
minqiyang 已提交
83
                    % type(learning_rate))
84
            if self._parameter_list is None:
85 86 87
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
88 89 90 91 92 93 94 95
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
96
        else:
97
            if not isinstance(learning_rate,
98
                              (float, framework.Variable, LRScheduler)):
M
minqiyang 已提交
99
                raise TypeError(
100
                    "learning rate should be float or LRScheduler, got %s here"
101
                    % type(learning_rate))
M
minqiyang 已提交
102

103 104 105 106 107
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
108
        self.regularization = regularization
109
        self._grad_clip = grad_clip
110
        self._learning_rate = learning_rate
L
Leo Chen 已提交
111

D
dzhwinter 已提交
112
        self._dtype = None
L
Leo Chen 已提交
113 114 115 116
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

117
        # each program should have a independent learning rate
118
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
119
        self._learning_rate_map = dict()
120
        if isinstance(self._learning_rate, framework.Variable):
121 122
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
123 124 125 126 127
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
128 129
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
Q
Qiao Longfei 已提交
130
        self.helper = None
131
        self._opti_name_list = []
H
hong 已提交
132
        self._accumulators_holder = {}
133
        self._param_device_map = dict()
H
hong 已提交
134 135 136 137

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
138 139
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
140 141 142

        Args: None
        Return:
T
tianshuo78520a 已提交
143
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
144 145 146 147 148
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
149 150 151 152 153 154

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
155 156

        '''
157
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
158 159 160 161
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
162 163
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
164
        # global step if use lr decay
165
        if isinstance(self._learning_rate, LRScheduler):
166 167
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
168
        if isinstance(self._learning_rate, LearningRateDecay):
169 170 171 172
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
173 174 175
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')

176 177
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp)
H
hong 已提交
178

179
                state_dict['global_step'] = var_temp
H
hong 已提交
180 181 182
        return state_dict

    @framework.dygraph_only
183
    def set_state_dict(self, state_dict):
H
hong 已提交
184
        '''
T
tianshuo78520a 已提交
185
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
186 187 188 189 190 191 192 193

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
194

195 196
                import paddle
                import paddle.fluid as fluid
197 198 199

                paddle.disable_static()

200
                emb = paddle.nn.Embedding(10, 10)
201

202
                state_dict = emb.state_dict()
203
                fluid.save_dygraph(state_dict, "paddle_dy")
204

205
                scheduler = paddle.optimizer.lr.NoamDecay(	
206 207 208 209
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
210
                state_dict = adam.state_dict()
211
                fluid.save_dygraph(state_dict, "paddle_dy")
212

213
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
214
        '''
215 216
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
217
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
218 219

        if isinstance(self._learning_rate, LearningRateDecay):
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
                raise RuntimeError("State dict type {} not supprt".format(
                    str(type(load_para))))

            assert model_np.shape == load_para_np.shape,  \
                                        "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
260
                                                param.name, model_np.shape, load_para_np.shape)
261 262 263

            assert model_np.dtype == load_para_np.dtype, \
                                        "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
264
                                            param.name, model_np.dtype, load_para_np.dtype)
265 266 267

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
268 269 270 271 272
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
273
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
274

275 276 277 278
        for k, v in self._global_accumulators.items():
            assert v.name in state_dict, \
                        "optimizer variable {} not found".format( v.name )
            _load_state_para(state_dict, v)
279

280 281 282
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

283 284
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
285

Q
Qiao Longfei 已提交
286
    def _create_global_learning_rate(self):
287 288
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype='float32' if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
                self._learning_rate_map[framework.default_main_program(
                )] = lr_var

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
            return

311 312 313
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
314 315 316 317 318 319 320 321 322 323 324 325
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
326
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
327
            elif isinstance(self._learning_rate, LearningRateDecay):
328 329 330
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
331
                raise TypeError(
332 333
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
334
        else:
335 336 337 338
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
339 340 341 342 343 344
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
345

346 347 348 349 350 351 352 353
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                        
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
                global_block = framework.default_main_program().global_block()
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value)
                    },
                    stop_gradient=True)
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

432 433 434
    @framework.dygraph_only
    def current_step_lr(self):
        """
435
        :api_attr: imperative
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
481
        if isinstance(current_lr, framework.Variable):
482 483 484 485
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
486 487 488
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
489 490 491 492 493 494 495
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
496
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
497 498 499 500
        """
        get global decayed learning rate
        :return:
        """
501 502
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
503
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
504

Q
Qiao Longfei 已提交
505 506 507 508 509
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

510 511 512 513
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
514 515
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
516
        else:
W
Wu Yi 已提交
517
            if param_lr == 1.0:
Y
yuyang18 已提交
518
                return self._global_learning_rate()
W
Wu Yi 已提交
519
            else:
X
Xin Pan 已提交
520 521 522
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
523
                    return self._global_learning_rate() * param_lr
524 525 526 527 528 529 530

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
531
        """
532 533
        pass

534
    def _finish_update(self, block, parameters_and_grads):
535 536 537 538 539 540 541 542
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
543
            None
544 545 546
        """
        pass

547 548 549 550 551
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
552
                         shape=None,
553
                         type=None,
554
                         device=None):
555 556 557 558 559 560 561 562 563
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
564 565
        if self._name is not None:
            name = self._name + "_" + name
566 567
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
568
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
569
                return self._accumulators[name][param.name]
570
            raise Exception("Accumulator {} already exists for parameter {}".
571
                            format(name, param.name))
572 573
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
574
        assert isinstance(self.helper, LayerHelper)
575 576 577 578 579

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
580
        var = self.helper.create_global_variable(
581
            name=var_name,
Q
Qiao Longfei 已提交
582
            persistable=True,
F
fengjiayi 已提交
583
            dtype=dtype or param.dtype,
584
            type=param.type if type is None else type,
H
hong 已提交
585 586
            shape=shape,
            belong_to_optimizer=True)
587 588 589 590 591
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
592 593 594 595 596 597 598

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
599
        self._accumulators[name][param.name] = var
600
        return var
601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
    def _add_global_accumulator(self,
                                name,
                                dtype=None,
                                fill_value=0.0,
                                shape=None,
                                type=None,
                                device=None):
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name in self._global_accumulators):
            if framework.in_dygraph_mode():
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
        if shape == None:
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
            belong_to_optimizer=True)
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

656 657 658 659 660 661 662 663
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
664
            accumulator variable
665
        """
W
whs 已提交
666 667
        if self._name is not None:
            name = self._name + "_" + name
668 669 670 671 672 673
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name not in self._global_accumulators):
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

689 690 691 692 693 694 695 696 697 698 699 700
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
701
                        break
702 703 704 705 706 707 708

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

709
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
710 711 712
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
713
          parameters_and_grads(list(tuple(Variable, Variable))):
714
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
715 716

        Returns:
717
          return_op_list: a list of operators that will complete one step of
718 719 720
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
721
        """
722 723 724 725 726
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
727
        # for parameters and extend _finish_update method to add custom ops.
728

729
        # Allways called under program_guard use global block as loss block
730 731 732
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

733
        global_block = framework.default_main_program().global_block()
734 735 736 737 738 739 740 741 742
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
743
        self.helper = LayerHelper(self.__class__.__name__)
744
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
745
        self._create_accumulators(
746
            target_block,
C
chengduo 已提交
747
            [p[0] for p in parameters_and_grads if p[0].trainable])
748 749
        self._create_global_learning_rate()

M
minqiyang 已提交
750
        if framework.in_dygraph_mode():
751 752 753
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
754 755
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
756 757 758 759 760 761 762
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
763 764 765 766 767
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
768 769 770

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
771
        self._finish_update(target_block, parameters_and_grads)
772

773 774
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
775 776

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
777 778 779 780 781 782 783 784 785
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
786 787
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
803 804 805 806 807 808 809 810 811 812 813 814 815
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
816 817
        return new_param_grads, (table_param, table_grad), sgd_op

818 819 820 821 822 823 824
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
825
        The first part of ``minimize``, do auto-diff to append backward operations for
826 827 828
        the current program.

        Args:
829 830 831 832
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
833
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
834 835
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
836
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
837 838 839
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
840

841
        Return:
842 843
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
844

845
        Examples:
846
            See examples in ``apply_gradients``.
847
        """
848
        act_no_grad_set = None
L
Leo Chen 已提交
849
        if framework.in_dygraph_mode():
850
            pass
L
Leo Chen 已提交
851 852
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
853

L
Leo Chen 已提交
854 855 856 857
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

L
lujun 已提交
858
        if framework.in_dygraph_mode():
859 860 861
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list

C
chengduo 已提交
862
            params_grads = []
863
            for param in parameter_list:
C
chengduo 已提交
864 865
                if not param.trainable:
                    continue
866
                if param._grad_ivar() is not None:
C
chengduo 已提交
867
                    # create gradient variable
868
                    grad_var = param._grad_ivar()
C
chengduo 已提交
869
                    params_grads.append((param, grad_var))
870
        else:
C
chengduo 已提交
871 872 873 874 875
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
876 877 878 879
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
880 881
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
882 883
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
884
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
885
        return params_grads
886 887 888 889 890 891 892 893

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
894

895 896
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
897

898 899 900
        Examples:
            .. code-block:: python

901
                import paddle.fluid as fluid
902 903 904 905 906 907 908
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
909

910 911
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

912
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
913 914 915 916
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
917 918

        # Add regularization if any
919 920
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
921 922 923 924

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
925 926 927 928 929 930 931 932 933 934 935 936
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
937
        if framework.in_dygraph_mode():
C
chengduo 已提交
938 939
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
940 941
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
942 943
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
944 945 946 947 948 949 950
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
951
    def _get_no_grad_set(self, loss, no_grad_set=None):
952
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
953 954 955 956 957 958 959 960
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

961 962 963 964
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
965 966

        If not, new gradient will accumulat on previous gradient.
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

994
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
995 996
    def minimize(self,
                 loss,
997
                 startup_program=None,
Q
Qiao Longfei 已提交
998
                 parameter_list=None,
999
                 no_grad_set=None):
1000
        """
1001
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1002

1003
        Args:
1004 1005 1006 1007
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1008
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1009 1010
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1011
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1012
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1013

1014
        Returns:
1015 1016 1017
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1018 1019 1020
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
1021 1022 1023

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1024
        """
C
chengduo 已提交
1025
        assert isinstance(loss, Variable), "The loss should be an Variable."
1026

1027 1028
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
1029

C
chengduo 已提交
1030 1031 1032 1033 1034
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
1035

C
chengduo 已提交
1036 1037
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
1038

Q
Qiao Longfei 已提交
1039
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1040 1041 1042


class SGDOptimizer(Optimizer):
1043
    r"""
Q
qiaolongfei 已提交
1044 1045 1046 1047 1048 1049
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1050 1051 1052
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1053
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1054 1055
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1056 1057 1058 1059 1060
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1061 1062 1063 1064
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1065 1066
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1067 1068 1069 1070

    Examples:
        .. code-block:: python

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1096 1097
    """

1098 1099 1100 1101
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
1102
                 grad_clip=None,
1103
                 name=None):
Q
Qiao Longfei 已提交
1104
        assert learning_rate is not None
Q
Qiao Longfei 已提交
1105
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
1106
            learning_rate=learning_rate,
1107
            parameter_list=parameter_list,
X
Xin Pan 已提交
1108
            regularization=regularization,
1109
            grad_clip=grad_clip,
X
Xin Pan 已提交
1110
            name=name)
Q
Qiao Longfei 已提交
1111 1112
        self.type = "sgd"

1113
    @no_grad
1114
    def _append_optimize_op(self, block, param_and_grad):
1115
        lr = self._create_param_lr(param_and_grad)
1116
        if framework.in_dygraph_mode():
1117 1118 1119
            core.ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                         param_and_grad[0])
            return None
1120

1121
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1122 1123 1124 1125 1126 1127
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1128
                "LearningRate": lr
Q
Qiao Longfei 已提交
1129
            },
M
minqiyang 已提交
1130 1131
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
1132 1133

        return sgd_op
1134 1135 1136


class MomentumOptimizer(Optimizer):
1137
    r"""
Q
qiaolongfei 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1151
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1152 1153 1154

        & else:

Q
qiaolongfei 已提交
1155
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1156

1157 1158 1159 1160
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1161
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1162 1163
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1164
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1165 1166 1167 1168 1169
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1170 1171 1172 1173
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1174 1175
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1176 1177 1178 1179

    Examples:
        .. code-block:: python

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1205 1206 1207
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1208 1209 1210
    def __init__(self,
                 learning_rate,
                 momentum,
1211
                 parameter_list=None,
X
Xin Pan 已提交
1212 1213
                 use_nesterov=False,
                 regularization=None,
1214
                 grad_clip=None,
X
Xin Pan 已提交
1215
                 name=None):
1216 1217
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1218
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1219
            learning_rate=learning_rate,
1220
            parameter_list=parameter_list,
X
Xin Pan 已提交
1221
            regularization=regularization,
1222
            grad_clip=grad_clip,
X
Xin Pan 已提交
1223
            name=name)
1224 1225
        self.type = "momentum"
        self._momentum = momentum
1226
        self._use_nesterov = bool(use_nesterov)
1227 1228 1229 1230 1231

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1232
            self._add_accumulator(self._velocity_acc_str, p)
1233 1234 1235 1236 1237 1238

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1239 1240 1241 1242 1243 1244 1245 1246
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
                                     velocity_acc, lr, param_and_grad[0],
                                     velocity_acc, 'mu', self._momentum,
                                     'use_nesterov', self._use_nesterov)
            return None
1247

1248
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1249 1250 1251 1252
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1253
            "LearningRate": [lr]
1254 1255 1256 1257 1258 1259
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1260 1261 1262
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1263 1264 1265
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1266
            stop_gradient=True)
1267 1268

        return momentum_op
1269 1270


1271
class DGCMomentumOptimizer(Optimizer):
1272
    r"""
1273
	:api_attr: Static Graph
S
swtkiwi 已提交
1274

1275
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1276

G
gongweibao 已提交
1277
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1278 1279
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1280
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1281 1282 1283

    Eventually, these gradients become large enough to be transmitted.

1284
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1285

G
gongweibao 已提交
1286
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1287 1288 1289 1290

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1291

1292 1293
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1294

1295
        2. Call momentum to optimize the cost.
1296 1297

    Args:
1298 1299
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1300
        momentum (float): Momentum factor.
G
gongweibao 已提交
1301
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1302 1303 1304 1305 1306 1307 1308
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1309
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1310 1311
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1312
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1313 1314 1315 1316 1317
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1318 1319 1320
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1321 1322
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1323 1324 1325 1326

    Examples:
        .. code-block:: python

1327
            import paddle.fluid as fluid
1328
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1329 1330 1331 1332 1333
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1334 1335

    """
1336 1337
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1338 1339 1340 1341 1342 1343 1344

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1345
                 parameter_list=None,
1346 1347 1348
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1349
                 grad_clip=None,
1350
                 name=None):
Z
zhongpu 已提交
1351 1352
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1353 1354 1355 1356

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1357 1358 1359 1360
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1361
            parameter_list=parameter_list,
1362
            regularization=regularization,
1363
            grad_clip=grad_clip,
1364 1365 1366 1367
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1368

1369
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1370
        self._rampup_begin_step = rampup_begin_step
1371 1372
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1373

1374
        self._rampup_begin_step_var = None
1375
        self._global_step_var = None
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
                value)
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1388 1389

            self._num_trainers = num_trainers
1390
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1391

1392 1393
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1394

1395 1396 1397
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1398

1399 1400
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1401
            from .regularizer import L1Decay, L2Decay
1402 1403 1404 1405
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1406 1407
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1408
        return regular_type, regular_coeff
1409

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1436 1437

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1438 1439 1440
            type = "momentum"
        else:
            type = "dgc_momentum"
1441 1442 1443 1444 1445
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1446
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1447 1448 1449

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1450 1451 1452 1453
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1454 1455 1456
            stop_gradient=True)
        return dgc_momentum_op

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1489 1490 1491 1492 1493 1494
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1495
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1496

1497 1498 1499
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1500 1501 1502 1503 1504
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1505
            name=core.dgc.kDGCRampUpBeginStepName(),
1506 1507 1508
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1509 1510
        self.helper = LayerHelper(self.__class__.__name__)

1511
        for param_var, grad_var in param_and_grads:
1512 1513 1514
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1515
            if not self._is_use_dgc(param_var, grad_var):
1516 1517
                continue

1518
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1519 1520 1521 1522 1523

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1524
                name=param_var.name + core.dgc.kDGCKName(),
1525 1526 1527 1528 1529 1530 1531
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1532
                name=param_var.name + core.dgc.kDGCEncodedName(),
1533 1534 1535
                value=0.0,
                force_cpu=False)

1536 1537 1538 1539 1540 1541 1542 1543
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1563 1564
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1565
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1566
                         encoded_var, gather_var)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1582 1583
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1584 1585 1586 1587 1588

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1589
            type="dgc_clip_by_norm",
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1602
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1603 1604

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1605
                encoded_var, gather_var):
1606 1607
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1608

1609 1610 1611 1612 1613 1614 1615
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1616 1617 1618 1619 1620 1621
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1622
                "Param": param_var,
1623 1624
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1625 1626 1627 1628 1629 1630
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1631 1632
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1633 1634 1635 1636 1637 1638
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1639
                "rampup_step": float(self._rampup_step),
1640 1641
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1642 1643 1644 1645 1646 1647 1648 1649
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1650
    @imperative_base.no_grad
1651
    def apply_gradients(self, params_grads):
1652 1653 1654 1655 1656
        # Note: since we can't use all_reduce_op now,
        # dgc_op should be the last op of one grad.
        # Maybe need a grad allreduce pass.
        self._append_dgc_ops(params_grads)

1657 1658 1659 1660 1661 1662
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1663
        # DGC clip and regularization in optimizer.backward
1664 1665 1666 1667 1668 1669
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1670
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1671 1672 1673 1674 1675
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1690

1691
class LarsMomentumOptimizer(Optimizer):
1692
    r"""
1693 1694 1695 1696 1697 1698 1699 1700 1701
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1702
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1703 1704 1705

        & param = param - velocity

1706 1707 1708 1709 1710 1711
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1712
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1713 1714
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1715 1716 1717 1718 1719
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1720 1721 1722 1723
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1724 1725
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1726 1727
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1728 1729 1730
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1731
        
1732 1733 1734
    Examples:
        .. code-block:: python

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1751 1752 1753 1754 1755 1756 1757 1758
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1759
                 parameter_list=None,
1760
                 regularization=None,
1761
                 grad_clip=None,
1762 1763
                 name=None,
                 exclude_from_weight_decay=None,
1764 1765 1766
                 epsilon=0,
                 multi_precision=False,
                 rescale_grad=1.0):
1767 1768 1769 1770
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1771
            parameter_list=parameter_list,
1772
            regularization=regularization,
1773
            grad_clip=grad_clip,
1774 1775 1776 1777 1778
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1779 1780 1781 1782 1783
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + '_fp32_master'
        var_name = unique_name.generate(var_name)
        var = layers.create_global_var(
            name=var_name,
            shape=param.shape,
            value=0,
            dtype='float32',
            persistable=True)
        block = self.helper.startup_program.global_block()
        block.append_op(
            type="cast",
            inputs={"X": [param]},
            outputs={"Out": [var]},
            attrs={
                "in_dtype": param.dtype,
                "out_dtype": core.VarDesc.VarType.FP32
            })
        self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
        if (name not in self._accumulators or
                target_name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, target_name))
        return self._accumulators[name][target_name]
1830 1831 1832 1833 1834

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
1835 1836 1837 1838 1839 1840 1841 1842 1843
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
1844 1845 1846 1847
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1848 1849 1850 1851 1852 1853 1854 1855
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1856 1857
        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
        lr = self._create_param_lr(param_and_grad)

        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)

        attrs = {
            "mu": self._momentum,
            "lars_coeff": self._lars_coeff,
            "lars_weight_decay": _lars_weight_decay,
            "multi_precision": find_master,
            "rescale_grad": self._rescale_grad
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": lr
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

1886 1887 1888
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1889 1890 1891
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1892
            stop_gradient=True)
1893 1894 1895 1896

        return momentum_op


1897
class AdagradOptimizer(Optimizer):
1898
    r"""
1899 1900
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1901

1902
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1903 1904 1905 1906 1907 1908 1909

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1910 1911 1912 1913 1914 1915
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1916 1917 1918
    for numerical stability to avoid the division by zero error.

    Args:
1919 1920 1921 1922
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
1923
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1924 1925
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1926 1927 1928 1929 1930
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1931 1932 1933 1934
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1935 1936 1937 1938 1939
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1940 1941 1942 1943

    Examples:
        .. code-block:: python

1944
            import numpy as np
1945
            import paddle.fluid as fluid
1946 1947

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1948
            inp = fluid.data(name="inp", shape=[2, 2])
1949 1950
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1951
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1952 1953 1954 1955 1956 1957 1958
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1959 1960 1961
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1962 1963 1964
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1965
                 parameter_list=None,
X
Xin Pan 已提交
1966
                 regularization=None,
1967
                 grad_clip=None,
1968
                 name=None,
X
xuezhong 已提交
1969
                 initial_accumulator_value=0.0):
1970 1971
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1972
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1973
            learning_rate=learning_rate,
1974
            parameter_list=parameter_list,
X
Xin Pan 已提交
1975
            regularization=regularization,
1976
            grad_clip=grad_clip,
X
Xin Pan 已提交
1977
            name=name)
1978 1979
        self.type = "adagrad"
        self._epsilon = epsilon
1980
        self.initial_accumulator_value = initial_accumulator_value
1981 1982 1983 1984 1985

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1986 1987 1988 1989
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1990 1991 1992 1993 1994 1995

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1996
        # Create the adagrad optimizer op
1997 1998 1999 2000 2001 2002
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
2003
                "LearningRate": self._create_param_lr(param_and_grad)
2004 2005 2006
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
2007 2008
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
2009 2010

        return adagrad_op
2011 2012 2013


class AdamOptimizer(Optimizer):
2014
    r"""
T
tianshuo78520a 已提交
2015
    The Adam optimizer uses an optimization described at the end
2016 2017 2018 2019 2020
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2035 2036
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2037
    Args:
2038 2039
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2040 2041
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2042
            The default value is 0.9.
2043 2044
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2045
            The default value is 0.999.
2046 2047
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2048
            The default value is 1e-08.
H
hong 已提交
2049
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2050 2051
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2052 2053 2054 2055 2056
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2057 2058 2059 2060
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2071 2072
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow 
            for whole model instead of creating beta_pow for each parameter. Default is false.
Q
qiaolongfei 已提交
2073 2074 2075 2076

    Examples:
        .. code-block:: python

2077 2078 2079 2080 2081 2082
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2083 2084
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2100

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
2118
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2135 2136 2137 2138 2139 2140 2141
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2142 2143 2144 2145 2146 2147 2148

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2149
                    return beta1, beta2, epsilon
2150

2151
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2152 2153
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2154
                                                    beta1=beta1,
2155 2156
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2167 2168 2169
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2170 2171
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2172 2173 2174 2175 2176

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2177
                 epsilon=1e-8,
2178
                 parameter_list=None,
X
Xin Pan 已提交
2179
                 regularization=None,
2180
                 grad_clip=None,
Q
Qiao Longfei 已提交
2181
                 name=None,
2182 2183
                 lazy_mode=False,
                 use_global_beta_pow=False):
2184 2185 2186 2187
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2188
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
2189
            learning_rate=learning_rate,
2190
            parameter_list=parameter_list,
X
Xin Pan 已提交
2191
            regularization=regularization,
2192
            grad_clip=grad_clip,
X
Xin Pan 已提交
2193
            name=name)
2194 2195 2196 2197
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2198
        self._lazy_mode = lazy_mode
2199
        self._use_global_beta_pow = use_global_beta_pow
2200 2201 2202 2203 2204 2205

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2206 2207
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
                    fill_value=0.9 if isinstance(self._beta1, Variable) \
                            else self._beta1,
                    shape=[1],
                    type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
                    fill_value=0.999 if isinstance(self._beta2, Variable) \
                            else self._beta2,
                    shape=[1],
                    type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2225
                name=self._beta1_pow_acc_str,
2226 2227
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
2228
                shape=[1],
2229
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2230
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2231
                name=self._beta2_pow_acc_str,
2232 2233
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
2234
                shape=[1],
2235
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2236 2237 2238 2239 2240 2241 2242 2243

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
                self._beta1_pow_acc_str)
            beta2_pow_acc = self._get_global_accumulator(
                self._beta2_pow_acc_str)
        else:
            beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                  param_and_grad[0])
            beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                  param_and_grad[0])
2254
        lr = self._create_param_lr(param_and_grad)
2255
        # create the adam optimize op
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
2267 2268
                1000, 'beta1', _beta1, 'beta2', _beta2, 'use_global_beta_pow',
                self._use_global_beta_pow)
2269 2270 2271

            return None

2272
        inputs = {
2273 2274
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2275
            "LearningRate": [lr],
2276 2277 2278 2279
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2280 2281
        }
        outputs = {
2282 2283 2284 2285 2286
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2287 2288 2289
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2290 2291
            "min_row_size_to_use_multithread": 1000,
            'use_global_beta_pow': self._use_global_beta_pow
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2302 2303 2304 2305
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2306

2307 2308
        adam_op = block.append_op(
            type=self.type,
2309 2310 2311
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2312
            stop_gradient=True)
2313 2314 2315

        return adam_op

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
    def _finish_update(self, block, parameters_and_grads):
        r"""Update beta1_pow and beta2_pow accumulator
        """
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
                self._beta1_pow_acc_str)
            beta2_pow_acc = self._get_global_accumulator(
                self._beta2_pow_acc_str)

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
                attrs = {}
                if isinstance(self._beta1, Variable):
                    inputs['ScaleTensor'] = self._beta1
                else:
                    attrs['scale'] = self._beta1
                block.append_op(
                    type="scale",
                    inputs=inputs,
                    outputs={"Out": beta1_pow_acc},
                    attrs=attrs,
                    stop_gradient=True)

                inputs = {"X": beta2_pow_acc}
                attrs = {}
                if isinstance(self._beta2, Variable):
                    inputs['ScaleTensor'] = self._beta2
                else:
                    attrs['scale'] = self._beta2
                block.append_op(
                    type="scale",
                    inputs=inputs,
                    outputs={"Out": beta2_pow_acc},
                    attrs=attrs,
                    stop_gradient=True)

2353 2354

class AdamaxOptimizer(Optimizer):
2355
    r"""
2356 2357 2358 2359
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2360

2361
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2375
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2389
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2390 2391
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2392 2393 2394 2395 2396
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2397 2398 2399 2400
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2401 2402 2403 2404 2405 2406
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2407

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2421
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2422 2423
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2424
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2425 2426 2427 2428 2429 2430 2431 2432 2433
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2434 2435 2436
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2437
    _beta1_pow_acc_str = "beta1_pow_acc"
2438 2439 2440 2441 2442

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2443
                 epsilon=1e-8,
2444
                 parameter_list=None,
X
Xin Pan 已提交
2445
                 regularization=None,
2446
                 grad_clip=None,
X
Xin Pan 已提交
2447
                 name=None):
2448 2449 2450 2451
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2452
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2453
            learning_rate=learning_rate,
2454
            parameter_list=parameter_list,
X
Xin Pan 已提交
2455
            regularization=regularization,
2456
            grad_clip=grad_clip,
X
Xin Pan 已提交
2457
            name=name)
2458 2459 2460 2461 2462 2463 2464 2465
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2466 2467
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2468 2469 2470 2471 2472
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2473 2474 2475 2476 2477 2478 2479

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2480 2481
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2482 2483 2484 2485 2486 2487
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2488
                "LearningRate": self._create_param_lr(param_and_grad),
2489 2490
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2491
                "Beta1Pow": beta1_pow_acc
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2502 2503
            },
            stop_gradient=True)
2504 2505 2506

        return adamax_op

2507
    def _finish_update(self, block, parameters_and_grads):
2508 2509 2510
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2511
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2512
            if grad is None or param.trainable is False:
2513
                continue
X
Xin Pan 已提交
2514 2515
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2516 2517
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2518
                block.append_op(
2519 2520 2521
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2522 2523
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2524 2525


2526
class DpsgdOptimizer(Optimizer):
2527
    r"""
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2564
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2565 2566
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2567 2568 2569 2570 2571 2572 2573 2574
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2575 2576
                 sigma=1e-8,
                 parameter_list=None):
2577 2578 2579 2580
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2581 2582
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2583 2584 2585 2586
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2587 2588 2589 2590 2591 2592 2593
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2594 2595 2596 2597 2598

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2599 2600 2601
        if self._seed == None:
            self._seed = 0

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2613 2614
                "sigma": self._sigma,
                "seed": self._seed
2615 2616 2617 2618 2619 2620
            },
            stop_gradient=True)

        return dpsgd_op


2621
class DecayedAdagradOptimizer(Optimizer):
2622
    r"""
2623 2624 2625
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2626

2627
    The parameter ``param_out`` update rule with gradient ``grad``:
2628 2629 2630 2631 2632 2633 2634

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2635 2636 2637 2638
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2639 2640 2641
    stability to avoid the division by zero error.

    Args:
2642 2643 2644 2645 2646
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2647
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2648 2649
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2650 2651 2652 2653 2654
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2655 2656 2657 2658
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2659 2660 2661 2662 2663 2664
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2665 2666 2667 2668

    Examples:
        .. code-block:: python

2669 2670
            import paddle.fluid as fluid

2671 2672 2673 2674
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2675
            optimizer.minimize(cost)
2676 2677 2678
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2679 2680 2681 2682
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2683
                 parameter_list=None,
X
Xin Pan 已提交
2684
                 regularization=None,
2685
                 grad_clip=None,
X
Xin Pan 已提交
2686
                 name=None):
2687 2688 2689 2690
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2691
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2692
            learning_rate=learning_rate,
2693
            parameter_list=parameter_list,
X
Xin Pan 已提交
2694
            regularization=regularization,
2695
            grad_clip=grad_clip,
X
Xin Pan 已提交
2696
            name=name)
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2724 2725
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2726
            stop_gradient=True)
2727 2728

        return decayed_adagrad_op
2729 2730


2731
class AdadeltaOptimizer(Optimizer):
2732
    r"""
Z
Zeng Jinle 已提交
2733
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2734

Z
Zeng Jinle 已提交
2735
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2736 2737 2738
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2739

Z
Zeng Jinle 已提交
2740 2741
    .. math::

Z
Zeng Jinle 已提交
2742
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2743

Z
Zeng Jinle 已提交
2744
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2745

Z
Zeng Jinle 已提交
2746
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2747 2748

    Args:
Z
Zeng Jinle 已提交
2749 2750 2751
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
2752
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2753 2754
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2755 2756 2757 2758 2759
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2760 2761 2762 2763
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2764 2765 2766
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2767 2768 2769 2770

    Examples:
        .. code-block:: python

2771
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2772

2773
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2774 2775
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2776 2777
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2778

Z
Zeng Jinle 已提交
2779 2780 2781 2782
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2783
    """
2784

2785 2786 2787
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2788 2789 2790 2791
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2792
                 parameter_list=None,
X
Xin Pan 已提交
2793
                 regularization=None,
2794
                 grad_clip=None,
X
Xin Pan 已提交
2795
                 name=None):
2796 2797 2798 2799 2800 2801
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2802
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2803
            learning_rate=learning_rate,
2804
            parameter_list=parameter_list,
X
Xin Pan 已提交
2805
            regularization=regularization,
2806
            grad_clip=grad_clip,
X
Xin Pan 已提交
2807
            name=name)
2808 2809 2810 2811 2812
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2813 2814
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2815 2816 2817 2818 2819 2820

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2821 2822
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2844 2845
                   "rho": self._rho},
            stop_gradient=True)
2846 2847 2848 2849

        return adadelta_op


Q
qingqing01 已提交
2850
class RMSPropOptimizer(Optimizer):
2851
    r"""
Q
qingqing01 已提交
2852 2853 2854 2855 2856 2857 2858 2859
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2860
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2861 2862 2863 2864

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2865
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2866 2867 2868 2869 2870 2871

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2872
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2873

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2888 2889 2890 2891
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2892
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2893 2894 2895 2896 2897
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2898 2899 2900
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2901
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2902
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2903
        momentum(float): :math:`\\beta` in equation is the momentum term,
2904
            default is 0.0.
2905 2906 2907 2908
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
2909
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2910 2911
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2912 2913 2914 2915 2916
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2917 2918 2919 2920
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2921 2922
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2923 2924 2925 2926 2927 2928 2929

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2955 2956 2957 2958
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2959
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2960 2961 2962 2963 2964 2965

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2966
                 centered=False,
2967
                 parameter_list=None,
X
Xin Pan 已提交
2968
                 regularization=None,
2969
                 grad_clip=None,
X
Xin Pan 已提交
2970
                 name=None):
Q
qingqing01 已提交
2971
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2972
            learning_rate=learning_rate,
2973
            parameter_list=parameter_list,
X
Xin Pan 已提交
2974
            regularization=regularization,
2975
            grad_clip=grad_clip,
X
Xin Pan 已提交
2976
            name=name)
Q
qingqing01 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2990
        self._centered = centered
Q
qingqing01 已提交
2991 2992 2993 2994 2995 2996 2997 2998

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2999
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3000 3001 3002 3003 3004 3005 3006 3007 3008

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
3009 3010
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
3011 3012 3013 3014 3015 3016 3017
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
3018
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
3019 3020 3021 3022 3023
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
3024 3025
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
3026 3027 3028 3029
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
3030 3031
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
3032 3033
            },
            stop_gradient=True)
Q
qingqing01 已提交
3034 3035 3036 3037

        return rmsprop_op


Q
qiaolongfei 已提交
3038
class FtrlOptimizer(Optimizer):
3039
    r"""
Q
qiaolongfei 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3078 3079 3080 3081 3082
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3083
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3084 3085
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3086 3087 3088 3089 3090
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3091 3092 3093 3094
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3095 3096
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3097 3098 3099 3100 3101 3102 3103

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3128

3129
    NOTE:
C
chengduo 已提交
3130
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3131 3132 3133 3134 3135
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
3136 3137 3138 3139 3140
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
3141
                 parameter_list=None,
X
Xin Pan 已提交
3142
                 regularization=None,
3143
                 grad_clip=None,
X
Xin Pan 已提交
3144
                 name=None):
Q
qiaolongfei 已提交
3145
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
3146
            learning_rate=learning_rate,
3147
            parameter_list=parameter_list,
X
Xin Pan 已提交
3148
            regularization=regularization,
3149
            grad_clip=grad_clip,
X
Xin Pan 已提交
3150
            name=name)
Q
qiaolongfei 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
3190
                   "l2": self._l2,
M
minqiyang 已提交
3191 3192
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
3193 3194 3195 3196

        return ftrl_op


Y
Yibing Liu 已提交
3197
class LambOptimizer(AdamOptimizer):
3198
    r"""
Y
Yibing Liu 已提交
3199 3200 3201 3202
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
3203 3204
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3205 3206 3207 3208 3209

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
3210
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
3211

Y
Yibing Liu 已提交
3212
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3213

3214 3215 3216 3217
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3218
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3219

Y
Yibing Liu 已提交
3220
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3221 3222 3223 3224 3225 3226


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3227 3228 3229 3230 3231 3232 3233 3234
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3235
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3236 3237
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3238 3239 3240 3241 3242
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3243 3244
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
3245 3246 3247
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
3248 3249 3250 3251 3252
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3253 3254 3255 3256 3257 3258

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
3259
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3260 3261 3262
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
3263 3264 3265 3266 3267
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
3281
                 parameter_list=None,
Y
Yibing Liu 已提交
3282
                 regularization=None,
3283
                 grad_clip=None,
Y
Yibing Liu 已提交
3284
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
3285 3286 3287 3288 3289 3290 3291 3292
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
3293
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
3294
            regularization=regularization,
3295
            grad_clip=grad_clip,
Y
Yibing Liu 已提交
3296 3297 3298 3299 3300 3301
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3302
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3303 3304 3305

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3306
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3317 3318 3319 3320 3321
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _, _, _, _ = core.ops.lamb(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'beta1', self._beta1,
                'beta2', self._beta2, 'epsilon', self._epsilon, 'weight_decay',
                weight_decay)
            return None
Y
Yibing Liu 已提交
3332

Y
Yibing Liu 已提交
3333 3334 3335 3336 3337 3338
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
3339
                "LearningRate": lr,
Y
Yibing Liu 已提交
3340 3341 3342 3343 3344 3345 3346 3347
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
3348 3349 3350
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc
Y
Yibing Liu 已提交
3351 3352 3353 3354 3355
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
3356
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
3357 3358 3359 3360 3361 3362
            },
            stop_gradient=True)

        return lamb_op


3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3376
Dpsgd = DpsgdOptimizer
3377
DecayedAdagrad = DecayedAdagradOptimizer
3378
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3379
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3380
Ftrl = FtrlOptimizer
3381
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3382
Lamb = LambOptimizer
3383 3384 3385


class ModelAverage(Optimizer):
3386
    r"""
3387
	:api_attr: Static Graph
S
swtkiwi 已提交
3388

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3407

3408 3409 3410 3411 3412 3413 3414 3415 3416
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3417 3418

    Args:
3419 3420 3421
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3422 3423 3424 3425 3426
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3427 3428 3429
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3430

3431
    Examples:
Q
qiaolongfei 已提交
3432 3433 3434

      .. code-block:: python

3435 3436 3437 3438 3439 3440
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3441

3442 3443 3444 3445
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3446
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3447 3448 3449 3450 3451 3452 3453 3454
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3455
                                                         max_average_window=12500)
3456 3457

            exe.run(startup_program)
3458 3459 3460 3461 3462
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3463 3464

            # apply ModelAverage
3465
            with model_average.apply(exe):
3466 3467 3468 3469
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3470 3471 3472
    """

    def __init__(self,
W
wanghaoshuang 已提交
3473
                 average_window_rate,
3474 3475
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3476 3477
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
3478 3479
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
3480 3481
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
3482 3483 3484
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3485

3486
        self.params_grads = []
3487 3488
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3489
            if param.do_model_average != False:
3490
                grad = param.block.create_var(
3491 3492
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3493 3494
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3495
                    stop_gradient=True)
3496
                self.params_grads.append((param, grad))
3497

3498
        for param, grad in self.params_grads:
3499 3500
            if grad is None:
                continue
X
Xin Pan 已提交
3501 3502
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3503
                self._append_average_accumulate_op(param)
3504

3505 3506 3507 3508
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3509
                self._add_average_apply_op(block, param_grad)
3510 3511 3512 3513 3514

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3515
                self._add_average_restore_op(block, param_grad)
3516

3517
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3518 3519 3520 3521 3522 3523
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3524
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3525
        old_num_accumulates = block._clone_variable(
3526
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3527
        num_updates = block._clone_variable(
3528 3529 3530 3531 3532 3533
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3534 3535 3536 3537
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3538
        ops._elementwise_div(x=sum, y=tmp, out=param)
3539 3540

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3541 3542
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3580 3581
            },
            stop_gradient=True)
3582

S
rename  
sneaxiy 已提交
3583
    @signature_safe_contextmanager
3584
    def apply(self, executor, need_restore=True):
3585 3586
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3587 3588

        Args:
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3633
        """
3634 3635 3636 3637 3638 3639
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3640 3641

    def restore(self, executor):
3642 3643
        """
        Restore ``Parameter`` values of current model.
3644 3645
        
        Args:
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3690
        """
3691
        executor.run(self.restore_program)
3692 3693 3694


class ExponentialMovingAverage(object):
3695
    r"""
3696
	:api_attr: Static Graph
S
swtkiwi 已提交
3697

3698 3699 3700 3701 3702 3703
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3704
        \\text{EMA}_0 & = 0
3705

3706 3707
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3708 3709 3710 3711
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3733 3734 3735


    Args:
Y
Yibing Liu 已提交
3736 3737 3738 3739 3740 3741 3742
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3743 3744 3745 3746 3747


    Examples:

	.. code-block:: python
3748 3749 3750 3751 3752

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3753
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3754 3755 3756 3757 3758 3759 3760 3761
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3762
	    global_steps = fluid.layers.autoincreased_step_counter()
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3792 3793
    """

3794
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3795 3796 3797
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3798
        self._decay = decay
3799
        self._thres_steps = thres_steps
3800
        self._name = name if name is not None else ''
3801 3802
        self._decay_var = self._get_ema_decay()

3803
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3804
        self._params_tmps = []
3805
        for param in default_main_program().global_block().all_parameters():
3806 3807 3808 3809 3810 3811 3812
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3813
                self._params_tmps.append((param, tmp))
3814

Y
Yibing Liu 已提交
3815 3816
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3817 3818
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3819
                self._ema_vars[param.name] = self._create_ema_vars(param)
3820 3821 3822 3823

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3824
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3825
            for param, tmp in self._params_tmps:
3826 3827
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3828
                ema = block._clone_variable(self._ema_vars[param.name])
3829
                layers.assign(input=param, output=tmp)
3830
                # bias correction
3831 3832
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
3833 3834 3835 3836
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow))
                    with switch.default():
                        layers.assign(output=param, input=ema)
3837 3838 3839 3840

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3841
            for param, tmp in self._params_tmps:
3842 3843 3844 3845
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3868 3869 3870 3871 3872 3873 3874
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3875
        decay_var = block._clone_variable(self._decay_var)
3876 3877
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3878

Y
Yibing Liu 已提交
3879
    def _create_ema_vars(self, param):
3880 3881 3882 3883 3884 3885 3886 3887 3888
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3889 3890 3891 3892 3893
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3894 3895
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3896
        param_master_emas = []
Y
Yibing Liu 已提交
3897 3898 3899 3900
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3901
                if param.name + '.master' in self._ema_vars:
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3919

3920 3921 3922 3923 3924 3925 3926
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3927 3928
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3944 3945 3946


class PipelineOptimizer(object):
3947
    """
3948
	:api_attr: Static Graph
S
swtkiwi 已提交
3949

3950 3951 3952 3953
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
3954

3955
    Args:
3956 3957 3958 3959
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
    
3960 3961
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3962

3963
            import paddle.fluid as fluid
H
hutuxian 已提交
3964 3965
            import paddle.fluid.layers as layers

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
3982
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
3983
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
3984
            optimizer.minimize(loss)
3985 3986 3987 3988 3989 3990 3991 3992 3993

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
3994 3995
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3996 3997
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
3998
            exe.train_from_dataset(
3999
                    fluid.default_main_program())
4000
            data_loader.reset()
4001 4002
    """

4003
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
Z
zhongpu 已提交
4004 4005
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
M
MRXLT 已提交
4006
        if not isinstance(optimizer, Optimizer) and not isinstance(
A
Aurelius84 已提交
4007 4008 4009
                optimizer, paddle.optimizer.Optimizer) and not isinstance(
                    optimizer, paddle.fluid.contrib.mixed_precision.decorator.
                    OptimizerWithMixedPrecision):
4010 4011 4012 4013
            raise ValueError("The 'optimizer' parameter for "
                             "PipelineOptimizer must be an instance of "
                             "Optimizer, but the given type is {}.".format(
                                 type(optimizer)))
H
hutuxian 已提交
4014
        self._optimizer = optimizer
4015 4016 4017 4018 4019 4020

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4021 4022 4023 4024
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
4025
            "start_cpu_core_id must be a non-negative integer.")
H
hutuxian 已提交
4026
        self._start_cpu_core_id = start_cpu_core_id
4027 4028 4029 4030 4031 4032
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4033
        self._param_device_map = None
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
        self._pipeline_pair = []
        self._pp_ring_map = dict()

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32")
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize
                })
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
            if op.type == "reduce_any" else 'c_allreduce_sum',
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4071
                'ring_id': self.global_ring_id,
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
                self._op_role_key: self._op_role.Optimize,
                'use_calc_stream': True
            })
        offset += 1
        if op.type == "reduce_any":
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize
                })
        return offset
H
hutuxian 已提交
4088

4089
    def _create_vars(self, block, ori_block):
4090
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4091
        used_var_set = set()
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
            # For op process vars on all devices, remove its input 
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4127 4128 4129 4130 4131 4132 4133 4134
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4135
            for var in vars:
4136 4137 4138
                # a var whose name contains "blocking_queue" 
                # only exists in startup program 
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4139 4140
                    continue
                used_var_set.add(var)
4141 4142
                if block._find_var_recursive(str(var)): continue
                source_var = ori_block._var_recursive(str(var))
4143
                if source_var.type == core.VarDesc.VarType.READER:
4144
                    dest_var = block.create_var(
4145 4146 4147
                        name=var,
                        type=core.VarDesc.VarType.READER,
                        persistable=source_var.persistable)
4148
                else:
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
                    dest_var = block._clone_variable(source_var, False)
                dest_var.stop_gradient = source_var.stop_gradient
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
            if self.use_sharding or not should_insert: continue
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4159

4160
    def _is_loss_grad_op(self, op):
4161 4162
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4163 4164 4165 4166
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

    def _is_backward_op(self, op):
4167 4168 4169 4170 4171 4172
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward))

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4173 4174

    def _is_optimize_op(self, op):
4175 4176
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize))
4177 4178 4179 4180 4181

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

4182
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4183
        """
4184
        Split a program into sections according to devices that ops run on.
4185
        The op whose op_device attr is "gpu:all" is copied to all sections.
4186 4187 4188

        Args:
            main_program (Program): the main program
4189
            devices: all used devices
H
hutuxian 已提交
4190
        """
4191
        # Map from device to its corresponding section program info
4192
        device_program_map = defaultdict(Program)
4193

4194
        block = main_program.block(0)
4195 4196
        for op in block.ops:
            device = op.attr(self._op_device_key)
4197 4198 4199
            # Copy ops whose op_device set to "gpu:all" to all sections.
            if device == "gpu:all":
                for device in devices:
4200 4201
                    program = device_program_map[device]
                    op_desc = op.desc
4202
                    ap_op = program.global_block().desc.append_op()
4203
                    ap_op.copy_from(op_desc)
4204
                    ap_op._set_attr(self._op_device_key, "")
4205 4206 4207
            else:
                program = device_program_map[device]
                op_desc = op.desc
4208
                ap_op = program.global_block().desc.append_op()
4209
                ap_op.copy_from(op_desc)
4210
                ap_op._set_attr(self._op_device_key, "")
4211

4212
        program_list = []
4213
        for key in devices:
4214
            program = device_program_map[key]
4215 4216
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4217

4218
        return program_list
H
hutuxian 已提交
4219

4220 4221 4222 4223 4224 4225 4226
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4227 4228 4229
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, \
            'For accumulators for Adam, the name must contain beta1_pow_acc ' \
            'or beta2_pow_acc.'
4230 4231 4232 4233
        param_name = var_name[0:var_name.index('_beta')]
        device = self._param_device_map[param_name]
        return device

4234 4235
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4236 4237 4238
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4239 4240
            if device == "cpu":
                assert op.type == "fill_constant", (
4241 4242
                    "For ops in startup program with the op_device attribute "
                    "of cpu, they must be of type fill_constant.")
4243 4244 4245
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4246
            if device:
4247
                device_index = int(device.split(':')[1])
4248
            else:
4249 4250
                # LR related ops
                device = None
4251
            if device and device_index != device_id: continue
4252
            op_desc = op.desc
4253
            ap_op = new_startup_program.global_block().desc.append_op()
4254 4255 4256
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4257
        self._create_vars(new_startup_program.global_block(), block)
4258 4259
        return new_startup_program

4260
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4261
        """
4262
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4263
        """
4264 4265 4266 4267 4268 4269
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4270 4271 4272 4273 4274 4275 4276 4277
        post_ops = self.input_var_to_op[var_name]
        if post_ops == None: return None
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4278

4279
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4280
        """
4281 4282
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4283
        """
4284 4285 4286 4287 4288 4289
        prev_ops = self.output_var_to_op[var_name]
        if prev_ops == None: return None
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4290
                break
4291
        return result_op
4292 4293

    def _rename_arg(self, op, old_name, new_name):
4294 4295
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308

    def _create_var(self, block, ref_var, name):
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
            dtype=ref_var.dtype,
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4309 4310
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4311
            need_check_feed=ref_var.desc.need_check_feed())
4312
        new_var.stop_gradient = ref_var.stop_gradient
4313 4314 4315 4316 4317 4318 4319 4320
        return new_var

    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4321

4322 4323 4324 4325 4326 4327
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4328
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4329
        """
4330
        Get the op_device attribute of a op.
H
hutuxian 已提交
4331
        """
4332 4333 4334
        device = op.attr(self._op_device_key) \
            if op.has_attr(self._op_device_key) else None
        if device:
B
Baibaifan 已提交
4335
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', "Now, only gpu and npu devices are " \
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
                "supported in pipeline parallemism."
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
            op._set_attr(self._op_device_key, "gpu:all")
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
                assert '@RENAME@' in name, \
                    "The op must be sum used to accumulate renamed vars."
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
                'op_device'), "{} has no op_device attr for var {}".format(
                    post_op.type, out_name)
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
        elif (op.type == "cast" or
              op.type == "scale") and self._is_backward_op(op):
4368
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4369 4370
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4371
            # for checkpoint offloading
4372 4373 4374 4375 4376
            assert len(op.input_arg_names) == 1 and len(
                op.output_arg_names) == 1
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4377
                post_op = self._find_post_op(idx, output_name)
4378 4379 4380
                op._set_attr(self._op_device_key,
                             post_op.attr(self._op_device_key))
            else:
4381
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
                op._set_attr(self._op_device_key,
                             prev_op.attr(self._op_device_key))
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
            while (not block.ops[idx + offset].has_attr(self._op_device_key) or
                   not block.ops[idx + offset].attr(self._op_device_key)):
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
4398
            param_name = self._strip_grad_suffix(grad_name[0])
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
            assert self._op_role_var_key in op.attr_names, "gradient_clip " \
                "and regularization ops must have op_role_var attribute."
            op_role_var = op.attr(self._op_role_var_key)
            assert len(op_role_var) == 2, "op_role_var for gradient_clip " \
                "regularization ops must have two elements."
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
            # For sum op added by global gradient clip, it must be 
            # put on all devices
            if (op.type == 'sum' or op.type == 'sqrt' or
                    op.type == 'fill_constant' or
                    op.type == 'elementwise_max' or
                    op.type == 'elementwise_div'):
                device = "gpu:all"
            op._set_attr(self._op_device_key, device)
B
Baibaifan 已提交
4419 4420
        elif op.type == "alloc_float_status":
            op._set_attr(self._op_device_key, "gpu:all")
4421 4422
        else:
            other_known_ops = [
4423 4424 4425 4426 4427
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
B
Baibaifan 已提交
4428
                'alloc_float_status',
4429 4430 4431 4432 4433 4434 4435 4436
            ]
            assert op.type in other_known_ops, "For other ops without " \
                "op_device set, they must be one of {}, but it " \
                "is {}".format(other_known_ops, op.type)
            assert self._is_optimize_op(op)
            op._set_attr(self._op_device_key, "gpu:all")

    def _add_op_device_attr(self, block):
4437
        """
4438 4439
        Add op_device attrribute for ops in block that have 
        not that attribute set.
4440
        """
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
        for idx, op in enumerate(list(block.ops)):
            if (op.type == "create_py_reader" or op.type == "read" or
                    op.type == "create_double_buffer_reader"):
                # Copy read related ops to all section to make them exit 
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
                op._set_attr(self._op_device_key, "gpu:all")
                continue
            # op_device attribute has been set
            if self._get_op_device_attr(op): continue
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
4454

4455 4456
    def _check_validation(self, block):
        """
4457 4458 4459
        Check whether ops in a block have both the op_device and the 
        op_role attributes set.
        Then, return all devices in order.
4460
        """
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
4471
        for op in block.ops:
4472
            if not op._has_kernel(op.type):
4473 4474 4475 4476
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)), (
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
4477 4478 4479 4480 4481 4482 4483 4484
            assert op.has_attr(self._op_role_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_role_key))
            assert int(op.attr(self._op_role_key)) in valid_op_role_value, \
                "op_role {} for op {} must be one of {}".format(
                    op.attr(self._op_role_key),
                    op.type,
                    valid_op_role_value)
4485 4486 4487
            assert op.has_attr(self._op_device_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_device_key))
4488 4489 4490 4491 4492 4493

            device = op.attr(self._op_device_key)
            assert device, ("op_device attribute for op "
                            "{} has not been set.".format(op.type))
            if device == "gpu:all": continue
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
4494 4495 4496
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
                "for pipeline parallelism.")
4497 4498 4499
            if not device in device_list:
                device_list.append(device)
        return device_list
4500

4501
    def _insert_sendrecv_ops_for_boundaries(self, block):
4502
        """
4503
        Insert a pair of send and recv ops for every two
4504 4505
        consecutive ops on different devices.
        """
4506
        # A map from var to device where op takes it as input,
4507
        # avoiding multiple send and recv ops.
4508
        input_var_to_device = dict()
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
            'first_optimize_index': first_optimize_index
        }
4519

4520
        for index, op in enumerate(list(block.ops)):
4521 4522
            cur_device = op.attr(self._op_device_key)
            if cur_device == "gpu:all": continue
4523 4524
            for var_name in op.input_arg_names:
                var = block.var(var_name)
4525
                # skip data var
4526
                if var.is_data: continue
4527
                prev_device = None
4528 4529 4530 4531
                generate_ops = self.output_var_to_op.get(var_name)
                if generate_ops is None:
                    if var_name not in self._param_device_map:
                        continue
4532
                    prev_device = self._param_device_map[var_name]
4533 4534 4535

                prev_op = self._find_prev_op(index, var_name)

4536 4537 4538
                if not prev_device:
                    prev_device = prev_op.attr(self._op_device_key) \
                        if prev_op else None
4539

4540 4541 4542
                if prev_device is None or prev_device == "gpu:all": continue

                if prev_device == cur_device: continue
4543

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
4574
                    var = block.vars[var_name]
4575 4576 4577
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
4578 4579 4580 4581 4582 4583 4584
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
4585

4586
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
4587
                        block._insert_op_without_sync(
4588
                            index=index + extra_index_info['index'],
4589 4590 4591
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
4592
                                self._op_device_key: prev_dev,
4593 4594 4595 4596 4597
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
                                'ring_id': ring_id
                            })
4598
                        extra_index_info['index'] += 1
F
fangshuixun007 已提交
4599
                        block._insert_op_without_sync(
4600
                            index=index + extra_index_info['index'],
4601 4602 4603 4604 4605
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var.shape,
                                'dtype': var.dtype,
4606
                                self._op_device_key: cur_dev,
4607 4608 4609 4610 4611
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
                                'ring_id': ring_id
                            })
4612
                        extra_index_info['index'] += 1
4613
                    elif self.schedule_mode == '1F1B':  # 1F1B
F
fangshuixun007 已提交
4614
                        block._insert_op_without_sync(
4615
                            index=index + extra_index_info['index'],
4616 4617 4618 4619
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
4620
                                self._op_device_key: prev_dev,
4621 4622
                                self._op_role_key: op_role,
                            })
4623
                        extra_index_info['index'] += 1
F
fangshuixun007 已提交
4624
                        block._insert_op_without_sync(
4625
                            index=index + extra_index_info['index'],
4626 4627 4628
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
4629
                                self._op_device_key: prev_dev,
4630 4631 4632 4633 4634
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
                            })
4635
                        extra_index_info['index'] += 1
4636 4637 4638 4639 4640 4641 4642 4643
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
                                'first_optimize_index']
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
F
fangshuixun007 已提交
4644
                        block._insert_op_without_sync(
4645
                            index=insert_index + extra_index_info['index'],
4646 4647 4648 4649
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
4650
                                self._op_device_key: prev_dev,
4651
                                self._op_role_key: new_op_role,
4652 4653
                                'ring_id': ring_id,
                            })
4654 4655
                        if int(op_role) == int(self._op_role.Forward):
                            extra_index_info['index'] += 1
4656 4657 4658
                        var_shape = list(var.shape)
                        var_shape[0] = self.micro_batch_size if var_shape[
                            0] < 0 else var_shape[0]
F
fangshuixun007 已提交
4659
                        block._insert_op_without_sync(
4660
                            index=index + extra_index_info['index'],
4661 4662 4663 4664 4665
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
4666
                                self._op_device_key: cur_dev,
4667 4668 4669 4670 4671
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
                                'ring_id': ring_id
                            })
4672
                        extra_index_info['index'] += 1
4673 4674 4675 4676 4677
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
                            "The given value is {}.".format(self.schedule_mode))

4678 4679 4680 4681 4682
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]))
        block._sync_with_cpp()

4683
    def _insert_loss_scale(self, block):
4684
        """
4685
        Scale the loss corresponding to number of micro-batches.
4686
        """
4687
        if self._num_microbatches == 1: return
4688
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
4689 4690 4691 4692 4693 4694 4695 4696
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    index=index + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
4697
                        'scale': 1.0 / self._num_microbatches,
4698 4699 4700 4701
                        self._op_role_key: self._op_role.Backward
                    })
                break

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
            if not self._is_optimize_op(op): continue
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
            if op.type == 'cast': continue
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
                if not core.grad_var_suffix() in name: continue
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

    def _accumulate_gradients(self, block, pp_allreduce_in_optimize=False):
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
        merged_gradient_names = []
        first_opt_op_idx = None

        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
4733
                    continue
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745

            if self._is_backward_op(op) and not first_opt_op_idx:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(block.ops): return
                if block.ops[first_opt_op_idx].type == "c_sync_comm_stream":
                    first_opt_op_idx += 1

            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0: continue
4746 4747
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
                    offset = 0
                    param_name = op_role_var[i]
                    if not block.has_var(param_name): continue
                    if '@BroadCast' in param_name: continue
                    param_grad_name = param_name + core.grad_var_suffix()
                    merged_param_grad_name = param_grad_name + '@MERGED'
                    if not block.has_var(merged_param_grad_name):
                        self._create_var(block, block.vars[param_name],
                                         merged_param_grad_name)
                    assert block.has_var(merged_param_grad_name)
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
4761
                    block._insert_op(
4762 4763 4764 4765
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
4766
                        attrs={
4767 4768 4769 4770 4771
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
                            # a trick to run this op once per mini-batch
                            self._op_role_key: self._op_role.Optimize.LRSched,
4772 4773
                        })
                    offset += 1
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
                    if not 'cast_fp16' in grad_name:
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='sum',
                            inputs={'X': [grad_var, merged_param_grad_var]},
                            outputs={'Out': merged_param_grad_var},
                            attrs={
                                self._op_role_key: self._op_role.Backward,
                            })
                        offset += 1
                        merged_gradient_names.append(merged_param_grad_name)
                    else:
                        # cast gradient to fp32 to accumulate to merged gradient
                        cast_grad_var_name = param_grad_name + '@TMP'
                        cast_grad_var = self._create_var(block, param_grad_var,
                                                         cast_grad_var_name)
                        cast_grad_var.persistable = False
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            })
                        offset += 1
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='sum',
                            inputs={
                                'X': [merged_param_grad_var, cast_grad_var]
                            },
                            outputs={'Out': merged_param_grad_var},
                            attrs={
                                self._op_role_key: self._op_role.Backward,
                            })
                        offset += 1
                        merged_gradient_names.append(merged_param_grad_name)
        return merged_gradient_names
4817 4818 4819

    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
4820
        for prog in program_list:
4821 4822 4823 4824 4825 4826
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
4827 4828
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
4829 4830 4831
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
4832
                self._create_vars(new_sub_block, origin_sub_block)
4833
                op._set_attr('sub_block', new_sub_block)
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
4850
        for prog in program_list:
4851 4852
            block = prog.block(0)
            for var_name in block.vars:
4853
                if var_name == "double_buffer_0": continue
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
4871
                    if op.type == "recv_v2" or op.type == "create_py_reader" or \
4872
                        op.type == "read" or op.type == "update_loss_scaling":
4873
                        continue
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
4893
            write_dev_index = int(write_device.split(':')[1])
4894 4895 4896
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue
4897 4898 4899
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
4900 4901 4902 4903 4904 4905 4906 4907 4908
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
4909 4910 4911

                write_block._insert_op(
                    index=0,
4912
                    type='send_v2',
4913 4914 4915
                    inputs={'X': write_block.var(var_name), },
                    attrs={
                        self._op_device_key: write_device,
4916
                        'use_calc_stream': False,
4917 4918
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
4919 4920
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
4921
                        'ring_id': ring_id
4922 4923 4924
                    })
                read_block._insert_op(
                    index=0,
4925
                    type='recv_v2',
4926 4927
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
4928 4929
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
4930
                        self._op_device_key: read_device,
4931
                        'use_calc_stream': False,
4932 4933 4934
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
4935 4936
                        'peer': write_dev_index,
                        'ring_id': ring_id
4937
                    })
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
                        self._op_device_key: read_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id
                    })

    def _is_gradient_clip_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/gradient_clip")

    def _is_regularization_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/regularization")
H
hutuxian 已提交
4958

4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
        self.output_var_to_op = dict()
        # A map from var to op which takes it as input.
        self.input_var_to_op = dict()

        for index, op in enumerate(list(block.ops)):
            for var_name in op.input_arg_names:
                ops = self.input_var_to_op.setdefault(var_name, [])
                ops.append([op, index])
            for var_name in op.output_arg_names:
                ops = self.output_var_to_op.setdefault(var_name, [])
                ops.append([op, index])

H
hutuxian 已提交
4976 4977 4978 4979 4980
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
4981
        main_block = loss.block
4982
        self.origin_main_block = main_block
4983
        main_program = main_block.program
4984 4985
        if startup_program is None:
            startup_program = default_startup_program()
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000

        assert main_program._pipeline_opt, 'Please use pipeline with fleet.'
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
        ]
        for key in required_keys:
            assert key in main_program._pipeline_opt, \
                'Please use pipeline with fleet to use {}.'.format(key)
        self.local_rank = main_block.program._pipeline_opt['local_rank']
        self.schedule_mode = main_block.program._pipeline_opt['schedule_mode']
5001 5002
        self.micro_batch_size = main_block.program._pipeline_opt[
            'micro_batch_size']
5003
        self.use_sharding = main_block.program._pipeline_opt['use_sharding']
5004
        self.ring_id = main_block.program._pipeline_opt['ring_id']
5005 5006 5007 5008 5009
        self.global_ring_id = main_block.program._pipeline_opt['global_ring_id']

        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
        self._param_device_map = self._origin_optimizer._param_device_map
5010

5011
        self._get_input_output_info(main_block)
5012 5013 5014
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

5026 5027 5028 5029 5030
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
            "another in the order of their ids.")
        # Step2: add send and recv ops between section boundaries
5031
        self._insert_sendrecv_ops_for_boundaries(main_block)
5032

5033
        # Step3: split program into sections and add pairs of
5034 5035
        # send and recv ops for data var.
        main_program = main_block.program
5036
        program_list = self._split_program(main_program, device_list)
5037
        for p in program_list:
5038
            self._create_vars(p.global_block(), main_block)
5039

5040
        # Step4: Special Case: process persistable vars that exist in
5041
        # multiple sections
5042 5043 5044
        # FIXME 
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
5045

5046
        # Step5: Add sub blocks for section programs
5047 5048
        self._add_sub_blocks(main_block, program_list)

5049
        self.local_rank %= len(device_list)
5050
        place_list = []
5051 5052
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
5053 5054 5055 5056
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
5057

5058
        # Step6: Split startup program
5059
        new_startup_program = self._split_startup_program(startup_program,
5060
                                                          self.local_rank)
5061 5062 5063 5064

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
5065
        real_block = program_list[self.local_rank].global_block()
5066 5067 5068 5069 5070 5071 5072 5073
        self._insert_loss_scale(real_block)
        if not self.use_sharding:
            # Step7: clear gradients before each mini-batch and 
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
5074

5075 5076 5077 5078
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
5079
        main_program._pipeline_opt = {
H
hutuxian 已提交
5080 5081
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
5082
            "pipeline_stage": self.local_rank,
5083
            "num_pipeline_stages": len(device_list),
5084
            "schedule_mode": self.schedule_mode,
5085
            "inner_parallelism": len(device_list),
5086 5087
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
5088
            "place_id": place_id,
5089
            "sync_steps": -1,
L
lilong12 已提交
5090
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
5091 5092
            "start_cpu_core_id": self._start_cpu_core_id,
        }
5093
        return optimize_ops, params_grads, program_list, self._pipeline_pair, self._pp_ring_map
M
mapingshuo 已提交
5094 5095


M
mapingshuo 已提交
5096 5097
class RecomputeOptimizer(Optimizer):
    """
5098
	:api_attr: Static Graph
S
swtkiwi 已提交
5099

M
mapingshuo 已提交
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
5160 5161
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
5162 5163
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
5164 5165
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
5166
        self.enable_offload = False
M
mapingshuo 已提交
5167 5168

    def _set_checkpoints(self, checkpoints):
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
        """
        Args:
            checkpoints (list): List of Variable or string    
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
            assert (
                isinstance(ckpt, six.string_types) or isinstance(ckpt, Variable)
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
5180 5181
        self._checkpoints = checkpoints

J
JZ-LIANG 已提交
5182 5183 5184 5185
    # should enable offload before calling backward 
    def _enable_offload(self):
        self.enable_offload = True

5186 5187
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
5188
        """
5189
	    :api_attr: Static Graph
S
swtkiwi 已提交
5190

M
mapingshuo 已提交
5191 5192 5193 5194
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
5195
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
5219 5220
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5258
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5259 5260 5261 5262
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5263
                    no_grad_set=None)
M
mapingshuo 已提交
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=True)

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=False)

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
        to instantiate their tensor hold_, which could tell us whether 
        the host memory could hold all the checkpoints from all the 
        GPU devices in this node. 
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
                stop_gradient=True)
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                })

        return

    def _insert_async_memcpy_op(self, insert_idx, src_varname, dst_varname,
5330
                                op_role, dst_place_type):
J
JZ-LIANG 已提交
5331 5332 5333 5334 5335 5336 5337 5338
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
5339 5340 5341 5342
            attrs={
                "dst_place_type": int(dst_place_type),
                OP_ROLE_KEY: op_role
            })
J
JZ-LIANG 已提交
5343 5344 5345 5346 5347 5348 5349

    def _insert_fetch_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname)

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
5350
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
5351 5352 5353 5354 5355

    def _insert_offload_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname)
        pinned_varname = self.checkpoint_name2pinned_name[varname]
5356
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627

    def _insert_sync_op(self, op_idx, checkpoint_name):
        # single stream offload no need sync 
        pass

    def _record_fetch_op(self, idx):
        assert len(self.un_fetch_checkpoint_names
                   ) > 0, "Could NOT found checkpoint to fetch"
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
        assert checkpoint_name == expected_checkpoint_name, "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name)
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
        assert checkpoint_name not in self.synced_checkpoints, "Try to sync the checkpoint [{}] twice".format(
            checkpoint_name)
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
        # don't offload the last checkpoints, to favor throughput        
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
            self.block.ops), "Could NOT found backword op in prog"

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
            self.bw_strart_op_idx)
        last_last_fetch_checkpoint = None

        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx:]):
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
                            second_to_last_fetch_checkpoint = fetched_checkpoint_varname
                            # there is NO fetch ahead the first checkpoint 
                            if input_var != self.sorted_checkpoint_names[0]:
                                fetched_checkpoint_varname = self._record_fetch_op(
                                    idx)

                        # should check the current used checkpoint is ths last fetch one 
                        assert second_to_last_fetch_checkpoint == input_var, "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var)
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
                            self.checkpoint_name2fetch_name[input_var])
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
                                input_var))

        assert len(self.un_fetch_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] fetch op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
        assert len(
            self.idx2insertions) == 0, "{} checkpoints left un-Fecthed".format(
                [ele[1] for ele in self.idx2insertions.values()])

    def _parse_forward(self):

        self.idx2insertions = {}
        # don't offload the last checkpoints, faster, less memory saving       
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
                'idx': -1
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
            self.block.ops), "Could NOT found Forward op in prog"
        last_offload_checkpoint = None

        for i, op in enumerate(self.block.ops[self.fw_strart_op_idx:
                                              self.bw_strart_op_idx]):

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
                        if last_offload_checkpoint != None:
                            if self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['count'] == 0:
                                self._record_sync_op(idx,
                                                     last_offload_checkpoint)
                            else:
                                last_usage_idx = self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['idx']
                                assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint)
                                self._record_sync_op(last_usage_idx + 1,
                                                     last_offload_checkpoint)
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
                            "There should be just ONE op that output checkpoint [{}]".
                            format(output_var))
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)
                    assert last_offload_checkpoint == self.sorted_checkpoint_names[
                        -2], "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                            last_checkpoint, self.sorted_checkpoint_names[-2],
                            last_offload_checkpoint)
                    # sync if last checkpoint has not been sync
                    if self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx'] == 0:
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx']
                        assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint)
                        self._record_sync_op(last_usage_idx + 1,
                                             last_offload_checkpoint)
            # record checkpoint usage  
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
                    assert input_var not in self.synced_checkpoints, "checkpoint [{}] used after sync".format(
                        input_var)
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

        assert len(self.un_offload_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints))

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
                range(self.fw_strart_op_idx, self.bw_strart_op_idx)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] offload op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] offload_sync op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
        assert len(self.idx2insertions
                   ) == 0, "{} checkpoints left un-Offloaded".format(
                       [ele[1] for ele in self.idx2insertions.values()])

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
        1. create pinned vars and temp vars 
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
        if startup_program == None:
            startup_program = fluid.default_startup_program()

        with program_guard(self._main_program, startup_program):
            assert len(self.checkpoint_shape) > 0, (
                "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".
                format(self.checkpoint_shape))
            assert all([ele > 0 for ele in self.checkpoint_shape]), (
                "all ele in checkpoints shape {} should be a determined integer larger than 0".
                format(self.checkpoint_shape))
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
                    checkpoint_varname)
                self.checkpoint_name2pinned_name[
                    checkpoint_varname] = pinned_var_name
                self.checkpoint_name2fetch_name[
                    checkpoint_varname] = fetch_var_name
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

M
mapingshuo 已提交
5628 5629 5630 5631 5632
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
5633
                 callbacks=None):
M
mapingshuo 已提交
5634 5635 5636 5637 5638 5639 5640
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
5641 5642
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5667
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5668 5669 5670 5671
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5672
                    no_grad_set=None)
M
mapingshuo 已提交
5673 5674
                print("Finished backward")
        """
5675 5676
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
5677 5678 5679 5680 5681 5682 5683 5684

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
5685 5686 5687 5688 5689 5690 5691
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)
            else:
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
5729
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
5730 5731 5732 5733 5734 5735 5736 5737
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5738
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5739 5740 5741 5742
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5743
                    no_grad_set=None)
M
mapingshuo 已提交
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
5758
                 no_grad_set=None):
5759
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
5760 5761 5762 5763 5764 5765 5766 5767 5768
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
5769
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
5770 5771 5772 5773 5774 5775 5776

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
5777
class LookaheadOptimizer(object):
5778
    r"""
5779
	:api_attr: Static Graph
S
swtkiwi 已提交
5780

M
mapingshuo 已提交
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
5806
            import numpy.random as random
M
mapingshuo 已提交
5807

5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
            paddle.enable_static()
        
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
            loss = fluid.layers.mean(x=loss)
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
5824

5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
            
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
            
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
5835 5836 5837 5838 5839

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
5840 5841
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

5893 5894 5895 5896 5897 5898 5899 5900
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True)
M
mapingshuo 已提交
5901

5902 5903 5904 5905 5906 5907 5908
            # Add Var alpha to main prog and startup prog
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True)
M
mapingshuo 已提交
5909

5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
            # Add Var step
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)

            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
5928 5929 5930 5931 5932
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
5946
        return mini_out
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

6004 6005
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (isinstance(k_steps, int) and
                k_steps > 0), "k_steps should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
6021
        self._optimize_ops = None
6022

6023 6024 6025 6026 6027 6028
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

6029
    def backward(self,
6030 6031 6032
                 loss,
                 startup_program=None,
                 parameter_list=None,
6033 6034
                 no_grad_set=None,
                 callbacks=None):
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
        assert self._is_the_backward_op(op), \
            'grad.op={} is not the backward op which produces the grad={}' \
            .format(op, grad.name)

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
        assert param.name in var_attr, \
            'when using GradientMergeOptimizer, param={} must be in var_attr={}' \
            .format(param.name, var_attr)
        assert grad.name in var_attr, \
            'when using GradientMergeOptimizer, grad={} must be in var_attr={}' \
            .format(param.name, var_attr)

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
        k_step_var = layers.create_global_var(
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        # Add step var & cond var
        step_var = layers.create_global_var(
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        cond_var = layers.create_global_var(
            name="gradient_merge_cond",
            shape=[1],
            value=bool(0),
            dtype='bool',
            persistable=True,
            force_cpu=True)

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var,
                        'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1,
                       'use_mkldnn': False})

            # cond_var = (step_var == 0)
            main_block.append_op(
                type='equal',
                inputs={'X': step_var,
                        'Y': zero_var},
                outputs={'Out': cond_var})

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
6162 6163

        #TODO(mapingshuo) support sparse embedding
6164 6165
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
6166
            assert (
6167
                param.type != core.VarDesc.VarType.SELECTED_ROWS
6168 6169
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

6170
            self._remove_op_role_var(param, grad)
6171

6172
        param_to_grad = {k.name: v for (k, v) in params_grads}
6173 6174 6175
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

6176 6177 6178 6179 6180
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
6181 6182 6183 6184 6185 6186 6187 6188
            param_var = main_block.var(param_name)
            assert (param_var is not None)
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            param_to_gradient_merge[param_name] = gradient_merge_var
6189

6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                })

6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
                inputs={'X': grad,
                        'Y': gradient_merge_var},
                outputs={'Out': gradient_merge_var},
                attrs={'axis': -1,
                       'use_mkldnn': False})
            self._add_gm_op_role_var(new_grad_op, param, gradient_merge_var,
                                     cond)
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False
                        })
6235

6236 6237 6238 6239 6240 6241
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
6242

6243 6244
            self._optimize_ops = self.inner_optimizer.apply_gradients(
                new_params_grads)
6245

6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad)

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        assert isinstance(loss, Variable), "The loss should be an Variable."

        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
6274 6275

        return optimize_ops, params_grads