optimizer.py 21.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import defaultdict
Q
Qiao Longfei 已提交
16

17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26

27
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
28 29 30 31 32 33


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
34 35
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
36 37
    """

Y
Yu Yang 已提交
38
    def __init__(self, learning_rate, regularization=None):
39 40
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
41
            raise TypeError("learning rate should be float or Variable")
D
dzhwinter 已提交
42
        self.regularization = regularization
43 44 45
        self._learning_rate = learning_rate
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
46
        self._learning_rate_map = dict()
47 48 49
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
50 51 52 53 54
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
55
        self.helper = None
Q
Qiao Longfei 已提交
56

Q
Qiao Longfei 已提交
57
    def _create_global_learning_rate(self):
58
        lr = self.global_learning_rate()
Q
Qiao Longfei 已提交
59

60 61 62 63
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
64
                raise TypeError(
65 66
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
67

68 69 70 71 72 73 74 75 76 77
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
            dtype='float32',
            persistable=True)

    def global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
78 79 80 81
        """
        get global decayed learning rate
        :return:
        """
82 83
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
84
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
85

Q
Qiao Longfei 已提交
86 87 88 89 90
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

91 92 93 94
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
95
        return self.global_learning_rate() * param_lr
96 97 98 99 100 101 102

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
103
        """
104 105
        pass

106 107 108 109 110 111 112 113 114 115 116 117 118
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
119
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
120 121 122 123 124 125 126 127 128 129 130
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
131
            raise Exception("Accumulator {} already exists for parameter {}".
132
                            format(name, param.name))
Q
Qiao Longfei 已提交
133 134 135

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
136
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
137
            persistable=True,
F
fengjiayi 已提交
138
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
139 140 141
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
142
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
143
        self._accumulators[name][param.name] = var
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Q
Qiao Longfei 已提交
161 162 163
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
164
                                 startup_program=None):
Q
Qiao Longfei 已提交
165 166 167 168 169 170 171
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
172 173 174 175
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
176
          :param startup_program:
Q
Qiao Longfei 已提交
177
        """
178 179 180 181 182
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
183
        # for parameters and extend _finish_update method to add custom ops.
184 185

        # Create any accumulators
Q
Qiao Longfei 已提交
186
        program = loss.block.program
187
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
188 189
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
190 191 192
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
193
            self._create_global_learning_rate()
194 195 196 197 198 199 200 201 202 203 204

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
205
            self._finish_update(loss.block)
206

Y
Yancey1989 已提交
207 208
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
209

Q
Qiao Longfei 已提交
210 211
    def minimize(self,
                 loss,
212
                 startup_program=None,
Q
Qiao Longfei 已提交
213 214
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
215 216
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
217
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
218 219
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
220
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
221
                                       [error_clip_callback])
Y
Yu Yang 已提交
222 223 224

        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
225
        # Add regularization if any
D
dzhwinter 已提交
226 227
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
228

Q
Qiao Longfei 已提交
229
        optimize_ops = self.create_optimization_pass(params_grads, loss,
230
                                                     startup_program)
T
typhoonzero 已提交
231
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
232 233 234 235 236 237


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
238
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
239
        assert learning_rate is not None
Q
Qiao Longfei 已提交
240 241
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
242 243
        self.type = "sgd"

244 245
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
246

Q
Qiao Longfei 已提交
247 248 249 250 251 252
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
253
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
254
            },
255
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
256 257

        return sgd_op
258 259 260 261 262 263 264


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
265
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
266 267
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
268 269
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
270 271
        self.type = "momentum"
        self._momentum = momentum
272
        self._use_nesterov = bool(use_nesterov)
273 274 275 276 277

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
278
            self._add_accumulator(self._velocity_acc_str, p)
279 280 281 282 283 284 285 286 287 288 289 290 291

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
292
                "LearningRate": self._create_param_lr(param_and_grad)
293 294 295 296 297
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
298
            attrs={"mu": self._momentum,
299
                   "use_nesterov": self._use_nesterov})
300 301

        return momentum_op
302 303 304 305 306 307 308


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
309
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
310 311
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
312 313
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
314 315 316 317 318 319 320
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
321
            self._add_accumulator(self._moment_acc_str, p)
322 323 324 325 326 327 328

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

329
        # Create the adagrad optimizer op
330 331 332 333 334 335
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
336
                "LearningRate": self._create_param_lr(param_and_grad)
337 338 339 340 341 342
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
343 344 345 346 347 348 349 350 351 352 353 354


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
355
                 epsilon=1e-8,
D
dzhwinter 已提交
356
                 **kwargs):
357 358 359 360
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
361 362
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
363 364 365 366 367 368 369 370
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
371
        main_block = block.program.global_block()
372 373
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
374
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
375
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
376 377 378 379 380
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
381
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
382 383

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
384
            name=unique_name.generate('beta2_pow_acc'),
Q
Qiao Longfei 已提交
385 386 387 388 389 390
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
391
            self._beta2_pow_acc, initializer=Constant(self._beta2))
392 393 394

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
395 396
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
397 398 399 400 401 402 403 404

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
405
        # create the adam optimize op
406 407 408 409 410
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
411
                "LearningRate": self._create_param_lr(param_and_grad),
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
434 435
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
436 437 438 439 440
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
441
        scale_beta2 = main_block.append_op(
442 443 444 445 446 447
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
448 449 450 451 452 453 454 455 456 457 458 459


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
460
                 epsilon=1e-8,
D
dzhwinter 已提交
461
                 **kwargs):
462 463 464 465
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
466 467
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
468 469 470 471 472 473 474 475
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
476
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
477
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
478 479 480 481 482
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
483
            self._beta1_pow_acc, initializer=Constant(self._beta1))
484 485 486

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
487 488
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
489 490 491 492 493 494 495 496 497 498 499 500 501

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
502
                "LearningRate": self._create_param_lr(param_and_grad),
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
524 525
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
526 527 528 529 530 531
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
532 533 534 535 536 537 538


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
539
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
540 541 542 543
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
544 545
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer