Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
629b6c78
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
629b6c78
编写于
4月 09, 2020
作者:
Z
Zhou Wei
提交者:
GitHub
4月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add the prompt message of repeated settings of regularization,test=develop (#23355)
上级
02b4e989
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
187 addition
and
42 deletion
+187
-42
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+65
-27
python/paddle/fluid/param_attr.py
python/paddle/fluid/param_attr.py
+9
-5
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+81
-10
python/paddle/fluid/tests/unittests/test_regularizer.py
python/paddle/fluid/tests/unittests/test_regularizer.py
+32
-0
未找到文件。
python/paddle/fluid/optimizer.py
浏览文件 @
629b6c78
...
...
@@ -854,8 +854,11 @@ class SGDOptimizer(Optimizer):
parameter_list (list, optional): List of ``Variable`` names to update to minimize ``loss``.
\
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`.
\
Optional, default is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): This parameter is used by developers to print debugging information.
\
For details, please refer to :ref:`api_guide_Name`. Default is None.
...
...
@@ -954,8 +957,11 @@ class MomentumOptimizer(Optimizer):
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`.
\
Optional, default is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): This parameter is used by developers to print debugging information.
\
For details, please refer to :ref:`api_guide_Name`. Default is None.
...
...
@@ -1093,8 +1099,11 @@ class DGCMomentumOptimizer(Optimizer):
use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
local_grad_clip_norm (float, optional): Local gradient clip norm value. Optional, default is None, represent no need clip.
num_trainers (int, optional): The number of training nodes. Optional, default is None.
regularization (WeightDecayRegularizer, optional): A Regularizer, such as
\
:ref:`api_fluid_regularizer_L2DecayRegularizer`. Optional, default is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): This parameter is used by developers to print debugging information.
\
For details, please refer to :ref:`api_guide_Name`. Default is None.
...
...
@@ -1480,8 +1489,11 @@ class LarsMomentumOptimizer(Optimizer):
parameter_list (list, optional): List of ``Variable`` names to update to minimize ``loss``.
\
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`.
Optional, default is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): This parameter is used by developers to print debugging information.
\
For details, please refer to :ref:`api_guide_Name`. Default is None.
...
...
@@ -1590,8 +1602,11 @@ class AdagradOptimizer(Optimizer):
parameter_list (list, optional): List of ``Variable`` names to update to minimize ``loss``.
\
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
:ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
...
...
@@ -1706,8 +1721,11 @@ class AdamOptimizer(Optimizer):
parameter_list (list, optional): List of ``Variable`` names to update to minimize ``loss``.
\
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
:ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
...
...
@@ -1963,8 +1981,11 @@ class AdamaxOptimizer(Optimizer):
parameter_list (list, optional): List of ``Variable`` names to update to minimize ``loss``.
\
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
:ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
...
...
@@ -2212,8 +2233,11 @@ class DecayedAdagradOptimizer(Optimizer):
parameter_list (list, optional): List of ``Variable`` names to update to minimize ``loss``.
\
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
:ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
...
...
@@ -2308,9 +2332,11 @@ class AdadeltaOptimizer(Optimizer):
parameter_list (list, optional): List of ``Variable`` names to update to minimize ``loss``.
\
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
regularization (WeightDecayRegularizer, optional): A Regularizer, such as
fluid.regularizer.L2DecayRegularizer. Default None, meaning that there is no
regularization.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to
:ref:`api_guide_Name` .
...
...
@@ -2457,8 +2483,11 @@ class RMSPropOptimizer(Optimizer):
parameter_list (list, optional): List of ``Variable`` names to update to minimize ``loss``.
\
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`.
\
Optional, default is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): This parameter is used by developers to print debugging information.
\
For details, please refer to :ref:`api_guide_Name`. Default is None.
...
...
@@ -2622,8 +2651,11 @@ class FtrlOptimizer(Optimizer):
parameter_list (list, optional): List of ``Variable`` names to update to minimize ``loss``.
\
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`.
\
Optional, default is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): This parameter is used by developers to print debugging information.
\
For details, please refer to :ref:`api_guide_Name`. Default is None.
...
...
@@ -2761,8 +2793,11 @@ class LambOptimizer(AdamOptimizer):
parameter_list (list, optional): List of ``Variable`` names to update to minimize ``loss``.
\
This parameter is required in dygraph mode.
\
The default value is None in static mode, at this time all parameters will be updated.
regularization (Regularizer|None): A Regularizer, such as
fluid.regularizer.L1DecayRegularizer. Default None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Default None.
...
...
@@ -2922,8 +2957,11 @@ class ModelAverage(Optimizer):
average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
:ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method:
\
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set
\
regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be
\
ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.
\
Default None, meaning there is no regularization.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
...
...
python/paddle/fluid/param_attr.py
浏览文件 @
629b6c78
...
...
@@ -47,8 +47,11 @@ class ParamAttr(object):
learning_rate (float): The parameter's learning rate. The learning rate when
optimize is the global learning rates times the parameter's learning rate times
the factor of learning rate scheduler. Default 1.0.
regularizer (WeightDecayRegularizer, optional): Regularization factor. Default None, meaning
there is no regularization.
regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are two method:
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If
regularizer is also set in ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ),
that regularizer setting in optimizer will be ignored. Default None, meaning there is
no regularization.
trainable (bool): Whether this parameter is trainable. Default True.
do_model_average (bool): Whether this parameter should do model average
when model average is enabled. Default False.
...
...
@@ -215,9 +218,10 @@ class WeightNormParamAttr(ParamAttr):
learning_rate(float32): The parameter's learning rate when
optimizer is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
Default 1.0.
regularizer(WeightDecayRegularizer): Regularization factor, such as
``regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1)``.
Default None, meaning that there is no regularization.
regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are two method:
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If regularizer
is also set in ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ), that regularizer
setting in optimizer will be ignored. Default None, meaning there is no regularization.
trainable(bool, optional): Whether this parameter is trainable. Default True.
do_model_average(bool, optional): Whether this parameter should do model average.
Default False.
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
629b6c78
...
...
@@ -17,11 +17,15 @@ from __future__ import print_function
from
.
import
framework
from
.framework
import
in_dygraph_mode
,
_varbase_creator
from
.
import
core
import
logging
__all__
=
[
'L1Decay'
,
'L2Decay'
,
'L1DecayRegularizer'
,
'L2DecayRegularizer'
]
def
_create_regularization_of_grad
(
param
,
grad
,
regularization
=
None
):
def
_create_regularization_of_grad
(
param
,
grad
,
regularization
=
None
,
_repeat_regularizer
=
None
):
""" Create and add backward regularization Operators
Function helper of append_regularization_ops.
...
...
@@ -31,6 +35,8 @@ def _create_regularization_of_grad(param, grad, regularization=None):
return
grad
regularization_term
=
None
if
param
.
regularizer
is
not
None
:
if
regularization
is
not
None
:
_repeat_regularizer
.
append
(
param
.
name
)
# Add variable for regularization term in grad block
regularization_term
=
param
.
regularizer
(
param
,
grad
,
grad
.
block
)
elif
regularization
is
not
None
:
...
...
@@ -83,18 +89,25 @@ def append_regularization_ops(parameters_and_grads, regularization=None):
Exception: Unknown regularization type
"""
params_and_grads
=
[]
_repeat_regularizer
=
[]
if
in_dygraph_mode
():
for
param
,
grad
in
parameters_and_grads
:
new_grad
=
_create_regularization_of_grad
(
param
,
grad
,
regularization
)
new_grad
=
_create_regularization_of_grad
(
param
,
grad
,
regularization
,
_repeat_regularizer
)
params_and_grads
.
append
((
param
,
new_grad
))
else
:
with
framework
.
name_scope
(
'regularization'
):
for
param
,
grad
in
parameters_and_grads
:
with
param
.
block
.
program
.
_optimized_guard
([
param
,
grad
]):
new_grad
=
_create_regularization_of_grad
(
param
,
grad
,
regularization
)
new_grad
=
_create_regularization_of_grad
(
param
,
grad
,
regularization
,
_repeat_regularizer
)
params_and_grads
.
append
((
param
,
new_grad
))
if
len
(
_repeat_regularizer
)
>
0
:
param_name_strlist
=
", "
.
join
(
_repeat_regularizer
)
logging
.
info
(
"Regularization of [%s] have been set by ParamAttr or WeightNormParamAttr already. "
"So, the Regularization of Optimizer will not take effect for these parameters!"
%
param_name_strlist
)
return
params_and_grads
...
...
@@ -127,6 +140,11 @@ class L2DecayRegularizer(WeightDecayRegularizer):
"""
Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ).
When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
higher priority than ``optimizer`` .
In the implementation, the formula of L2 Weight Decay Regularization is as follows:
.. math::
...
...
@@ -134,12 +152,12 @@ class L2DecayRegularizer(WeightDecayRegularizer):
L2WeightDecay = reg\_coeff * parameter
Args:
regularization_coeff(float, optional): regularization coeff.
Default:0.0
regularization_coeff(float, optional): regularization coeff. Default:0.0
Examples:
.. code-block:: python
# Example1: set Regularizer in optimizer
import paddle.fluid as fluid
main_prog = fluid.Program()
...
...
@@ -153,9 +171,33 @@ class L2DecayRegularizer(WeightDecayRegularizer):
avg_loss = fluid.layers.mean(loss)
optimizer = fluid.optimizer.Adagrad(
learning_rate=1e-4,
regularization=fluid.regularizer.L2Decay
Regularizer
(
regularization=fluid.regularizer.L2Decay(
regularization_coeff=0.1))
optimizer.minimize(avg_loss)
# Example2: set Regularizer both in ParamAttr and optimizer
import paddle.fluid as fluid
l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
x = fluid.layers.uniform_random([3,4])
# set L1 regularization in fluid.ParamAttr
w_param = fluid.ParamAttr(regularizer=l1)
hidden1 = fluid.layers.fc(x, 8, param_attr=w_param) # fc_0.w_0(L1), fc_0.b_0
hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param) # fc_1.w_0(L1), fc_1.b_0
predict = fluid.layers.fc(hidden2, 32) # fc_3.w_0, fc_3.b_0
avg_loss = fluid.layers.mean(predict)
# set L2 regularization in optimizer
optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
optimizer.minimize(avg_loss)
# it will Print Message:
# Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already.
# So, the Regularization of Optimizer will not take effect for these parameters!
"""
def
__init__
(
self
,
regularization_coeff
=
0.0
):
...
...
@@ -205,6 +247,11 @@ class L1DecayRegularizer(WeightDecayRegularizer):
"""
Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ).
When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
higher priority than ``optimizer`` .
In the implementation, the formula of L1 Weight Decay Regularization is as follows:
.. math::
...
...
@@ -212,12 +259,12 @@ class L1DecayRegularizer(WeightDecayRegularizer):
L1WeightDecay = reg\_coeff * sign(parameter)
Args:
regularization_coeff(float, optional): regularization coeff.
Default:0.0.
regularization_coeff(float, optional): regularization coeff. Default:0.0.
Examples:
.. code-block:: python
# Example1: set Regularizer in optimizer
import paddle.fluid as fluid
main_prog = fluid.Program()
...
...
@@ -234,6 +281,30 @@ class L1DecayRegularizer(WeightDecayRegularizer):
regularization=fluid.regularizer.L1DecayRegularizer(
regularization_coeff=0.1))
optimizer.minimize(avg_loss)
# Example2: set Regularizer both in ParamAttr and optimizer
import paddle.fluid as fluid
l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
x = fluid.layers.uniform_random([3,4])
# set L1 regularization in fluid.ParamAttr
w_param = fluid.ParamAttr(regularizer=l1)
hidden1 = fluid.layers.fc(x, 8, param_attr=w_param) # fc_0.w_0(L1), fc_0.b_0
hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param) # fc_1.w_0(L1), fc_1.b_0
predict = fluid.layers.fc(hidden2, 32) # fc_3.w_0, fc_3.b_0
avg_loss = fluid.layers.mean(predict)
# set L2 regularization in optimizer
optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
optimizer.minimize(avg_loss)
# it will Print Message:
# Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already.
# So, the Regularization of Optimizer will not take effect for these parameters!
"""
def
__init__
(
self
,
regularization_coeff
=
0.0
):
...
...
python/paddle/fluid/tests/unittests/test_regularizer.py
浏览文件 @
629b6c78
...
...
@@ -230,6 +230,38 @@ class TestRegularizer(unittest.TestCase):
b
=
dense_sparse_p_sum
[
1
][
i
],
rtol
=
5e-5
)
def
test_repeated_regularization
(
self
):
with
fluid
.
dygraph
.
guard
():
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
randn
(
3
,
5
).
astype
(
'float32'
))
fluid
.
default_main_program
().
random_seed
=
1
l1
=
fluid
.
regularizer
.
L1Decay
(
regularization_coeff
=
0.1
)
fc_param_attr
=
fluid
.
ParamAttr
(
regularizer
=
l1
)
linear1
=
fluid
.
dygraph
.
Linear
(
5
,
2
,
param_attr
=
fc_param_attr
,
bias_attr
=
fc_param_attr
)
linear2
=
fluid
.
dygraph
.
Linear
(
5
,
2
,
param_attr
=
fc_param_attr
,
bias_attr
=
fc_param_attr
)
loss1
=
linear1
(
input
)
loss1
.
backward
()
# set l2 regularizer in optimizer, but l1 in fluid.ParamAttr
l2
=
fluid
.
regularizer
.
L2Decay
(
regularization_coeff
=
0.01
)
fluid
.
optimizer
.
SGD
(
parameter_list
=
linear1
.
parameters
(),
learning_rate
=
1e-2
,
regularization
=
l2
).
minimize
(
loss1
)
# only set l1 in fluid.ParamAttr
loss2
=
linear2
(
input
)
loss2
.
backward
()
fluid
.
optimizer
.
SGD
(
parameter_list
=
linear2
.
parameters
(),
learning_rate
=
1e-2
).
minimize
(
loss2
)
# they should both be applied by l1, and keep the same
self
.
assertTrue
(
np
.
allclose
(
linear1
.
weight
.
numpy
(),
linear2
.
weight
.
numpy
()),
"weight should use the regularization in fluid.ParamAttr!"
)
self
.
assertTrue
(
np
.
allclose
(
linear1
.
bias
.
numpy
(),
linear1
.
bias
.
numpy
()),
"bias should use the regularization in fluid.ParamAttr!"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录