optimizer.py 35.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
wanghaoshuang 已提交
14
import re
15
from collections import defaultdict
16
from paddle.fluid.framework import Program
17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26
from contextlib import contextmanager
27

28 29
__all__ = [
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad',
30
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
Y
Yu Yang 已提交
31 32
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'Adadelta', 'ModelAverage',
    'Optimizer'
33
]
Q
Qiao Longfei 已提交
34 35 36 37 38 39


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
40 41
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
42 43
    """

Y
Yu Yang 已提交
44
    def __init__(self, learning_rate, regularization=None):
45 46
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
47
            raise TypeError("learning rate should be float or Variable")
D
dzhwinter 已提交
48
        self.regularization = regularization
49 50 51
        self._learning_rate = learning_rate
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
52
        self._learning_rate_map = dict()
53 54 55
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
56 57 58 59 60
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
61
        self.helper = None
Q
Qiao Longfei 已提交
62

Q
Qiao Longfei 已提交
63
    def _create_global_learning_rate(self):
64
        lr = self.global_learning_rate()
Q
Qiao Longfei 已提交
65

66 67 68 69
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
70
                raise TypeError(
71 72
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
73

74 75 76 77 78 79 80 81 82 83
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
            dtype='float32',
            persistable=True)

    def global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
84 85 86 87
        """
        get global decayed learning rate
        :return:
        """
88 89
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
90
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
91

Q
Qiao Longfei 已提交
92 93 94 95 96
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

97 98 99 100
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
Q
qiaolongfei 已提交
101 102 103 104
        if param_lr == 1.0:
            return self.global_learning_rate()
        else:
            return self.global_learning_rate() * param_lr
105 106 107 108 109 110 111

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
112
        """
113 114
        pass

115 116 117 118 119 120 121 122 123 124 125 126 127
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

128 129 130 131 132 133
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
134 135 136 137 138 139 140 141 142 143 144
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
145
            raise Exception("Accumulator {} already exists for parameter {}".
146
                            format(name, param.name))
147 148
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
149 150
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
151
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
152
            persistable=True,
F
fengjiayi 已提交
153
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
154
            type=param.type,
155
            shape=shape)
Q
Qiao Longfei 已提交
156
        self.helper.set_variable_initializer(
157
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
158
        self._accumulators[name][param.name] = var
159
        return var
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Q
Qiao Longfei 已提交
177 178 179
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
180
                                 startup_program=None):
Q
Qiao Longfei 已提交
181 182 183 184 185 186 187
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
188 189 190 191
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
192
          :param startup_program:
Q
Qiao Longfei 已提交
193
        """
194 195 196 197 198
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
199
        # for parameters and extend _finish_update method to add custom ops.
200 201

        # Create any accumulators
Q
Qiao Longfei 已提交
202
        program = loss.block.program
203
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
204 205
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
206 207 208
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
209
            self._create_global_learning_rate()
210 211 212 213 214 215 216 217 218 219 220

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
221
            self._finish_update(loss.block)
222

Y
Yancey1989 已提交
223 224
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
225

Q
Qiao Longfei 已提交
226 227
    def minimize(self,
                 loss,
228
                 startup_program=None,
Q
Qiao Longfei 已提交
229 230
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
231 232
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
233
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
234 235
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
236
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
237
                                       [error_clip_callback])
Y
Yu Yang 已提交
238

Y
Yu Yang 已提交
239 240
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

Y
Yu Yang 已提交
241 242
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
243
        # Add regularization if any
D
dzhwinter 已提交
244 245
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
246

Q
Qiao Longfei 已提交
247
        optimize_ops = self.create_optimization_pass(params_grads, loss,
248
                                                     startup_program)
T
typhoonzero 已提交
249
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
250 251 252 253 254 255


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
256
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
257
        assert learning_rate is not None
Q
Qiao Longfei 已提交
258 259
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
260 261
        self.type = "sgd"

262 263
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
264

Q
Qiao Longfei 已提交
265 266 267 268 269 270
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
271
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
272
            },
273
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
274 275

        return sgd_op
276 277 278 279 280 281 282


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
283
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
284 285
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
286 287
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
288 289
        self.type = "momentum"
        self._momentum = momentum
290
        self._use_nesterov = bool(use_nesterov)
291 292 293 294 295

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
296
            self._add_accumulator(self._velocity_acc_str, p)
297 298 299 300 301 302 303 304 305 306 307 308 309

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
310
                "LearningRate": self._create_param_lr(param_and_grad)
311 312 313 314 315
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
316
            attrs={"mu": self._momentum,
317
                   "use_nesterov": self._use_nesterov})
318 319

        return momentum_op
320 321 322 323 324 325 326


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
327
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
328 329
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
330 331
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
332 333 334 335 336 337 338
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
339
            self._add_accumulator(self._moment_acc_str, p)
340 341 342 343 344 345 346

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

347
        # Create the adagrad optimizer op
348 349 350 351 352 353
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
354
                "LearningRate": self._create_param_lr(param_and_grad)
355 356 357 358 359 360
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
361 362 363 364 365 366 367 368 369 370 371 372


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
373
                 epsilon=1e-8,
D
dzhwinter 已提交
374
                 **kwargs):
375 376 377 378
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
379 380
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
381 382 383 384 385 386 387 388
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
389
        main_block = block.program.global_block()
390 391
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
392
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
393
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
394 395 396 397 398
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
399
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
400 401

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
402
            name=unique_name.generate('beta2_pow_acc'),
Q
Qiao Longfei 已提交
403 404 405 406 407 408
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
409
            self._beta2_pow_acc, initializer=Constant(self._beta2))
410 411 412

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
413 414
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
415 416 417 418 419 420 421 422

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
423
        # create the adam optimize op
424 425 426 427 428
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
429
                "LearningRate": self._create_param_lr(param_and_grad),
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
452 453
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
454 455 456 457 458
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
459
        scale_beta2 = main_block.append_op(
460 461 462 463 464 465
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
466 467 468 469 470 471 472 473 474 475 476 477


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
478
                 epsilon=1e-8,
D
dzhwinter 已提交
479
                 **kwargs):
480 481 482 483
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
484 485
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
486 487 488 489 490 491 492 493
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
494
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
495
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
496 497 498 499 500
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
501
            self._beta1_pow_acc, initializer=Constant(self._beta1))
502 503 504

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
505 506
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
507 508 509 510 511 512 513 514 515 516 517 518 519

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
520
                "LearningRate": self._create_param_lr(param_and_grad),
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
542 543
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
544 545 546 547 548 549
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
550 551 552 553 554 555 556


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
557
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
558 559 560 561
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
562 563
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
594 595


596
class AdadeltaOptimizer(Optimizer):
597 598 599
    """
    **Adadelta Optimizer**
    Simple Adadelta optimizer with average squared grad state and
600
    average squared update state.
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
        learning_rate(float): global leraning rate
        rho(float): rho in equation
        epsilon(float): epsilon in equation

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
623
    """
624

625 626 627 628
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

    def __init__(self, learning_rate, epsilon=1.0e-6, rho=0.95, **kwargs):
629 630 631 632 633 634
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
635 636 637 638 639 640 641
        super(AdadeltaOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
642 643
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
644 645 646 647 648 649

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
650 651
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 \\\\

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
    each weight. Then dividing the gradient by :math: `sqrt{v(w,t)}`.

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 \\\\

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{v(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    where, :math: `\\rho` is a hyperparameter and typical values are 0.9, 0.95
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
        learning_rate(float): global leraning rate.
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
        momentum(float): :math: `\\beta` in equation is the momentum term,
            set 0.0 by default.

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
                 **kwargs):
        super(RMSPropOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
                "momentum": self._momentum
            })

        return rmsprop_op


795 796 797 798 799 800 801 802 803 804 805 806 807 808
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
809
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
810
RMSProp = RMSPropOptimizer
811 812 813 814 815 816 817 818 819 820 821 822 823


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
W
wanghaoshuang 已提交
824
        params_grads: A list of parameter-grad variable pairs.
825 826 827 828 829 830 831 832 833 834 835 836 837
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.

    Examples:
        ...
        optimizer = fluid.optimizer.Momentum()
        _, params_grads = optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(params_grads, 0.15,
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
838 839 840 841

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
842 843 844
    """

    def __init__(self,
W
wanghaoshuang 已提交
845
                 average_window_rate,
W
wanghaoshuang 已提交
846
                 params_grads=None,
847 848 849 850 851 852 853
                 min_average_window=10000,
                 max_average_window=10000,
                 **kwargs):
        super(ModelAverage, self).__init__(0.0, **kwargs)
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
854

W
wanghaoshuang 已提交
855 856 857
        self.params_grads = [] if params_grads is None else params_grads
        params = {}
        for param, grad in self.params_grads:
858 859
            if param.do_model_average != False:
                params[param.name] = (param, grad)
860 861
        for param in framework.default_main_program().global_block(
        ).all_parameters():
W
wanghaoshuang 已提交
862
            if param.name not in params and param.do_model_average != False:
863 864 865 866
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
867 868 869
                    stop_gradient=True)
                params[param.name] = (param, grad)
        self.params_grads = params.values()
870

871
        for param, grad in self.params_grads:
872
            self._append_average_accumulate_op(param)
873

874 875 876 877
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
878
                self._add_average_apply_op(block, param_grad)
879 880 881 882 883

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
884
                self._add_average_restore_op(block, param_grad)
885

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    def _add_average_apply_op(self, block, param_grad):
        param = block.clone_variable(param_grad[0])
        grad = block.clone_variable(param_grad[1])
        sum_1 = block.clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block.clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block.clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block.clone_variable(
            self._get_accumulator('num_accumulates', param))
        old_num_accumulates = block.clone_variable(
            self._get_accumulator('old_num_accumulates', param))
        num_updates = block.clone_variable(
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
        tmp = layers.cast(x=tmp, dtype='float32')
        sum = layers.cast(x=sum, dtype='float32')
        layers.elementwise_div(x=sum, y=tmp, out=param)

    def _add_average_restore_op(self, block, param_grad):
        param = block.clone_variable(param_grad[0])
        grad = block.clone_variable(param_grad[1])
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

949 950
    @contextmanager
    def apply(self, executor, need_restore=True):
951 952
        """Apply average values to parameters of current model.
        """
953 954 955 956 957 958
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
959 960 961 962

    def restore(self, executor):
        """Restore parameter values of current model.
        """
963
        executor.run(self.restore_program)