optimizer.py 48.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
W
wanghaoshuang 已提交
16
import re
17
from collections import defaultdict
18
from paddle.fluid.framework import Program, Variable, name_scope
19 20 21 22 23 24 25 26 27
from . import framework
from . import layers
from .backward import append_backward
from .framework import program_guard
from . import unique_name
from .initializer import Constant
from .layer_helper import LayerHelper
from .regularizer import append_regularization_ops
from .clip import append_gradient_clip_ops, error_clip_callback
28
from contextlib import contextmanager
29

30
__all__ = [
Q
qiaolongfei 已提交
31
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
32
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
33
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
Y
yuyang18 已提交
34
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'RMSPropOptimizer'
35
]
Q
Qiao Longfei 已提交
36 37 38 39 40 41


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
42 43
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
44 45
    """

X
Xin Pan 已提交
46
    def __init__(self, learning_rate, regularization=None, name=None):
47 48
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
49
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
50
        self._name = name
D
dzhwinter 已提交
51
        self.regularization = regularization
52
        self._learning_rate = learning_rate
D
dzhwinter 已提交
53 54
        # the learning rate type should be inferenced from loss
        self._dtype = None
55 56
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
57
        self._learning_rate_map = dict()
58 59 60
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
61 62 63 64 65
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
66
        self.helper = None
Q
Qiao Longfei 已提交
67

Q
Qiao Longfei 已提交
68
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
69
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
70

71 72 73 74
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
75
                raise TypeError(
76 77
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
78

79 80 81 82 83 84
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
D
dzhwinter 已提交
85
            dtype='float32' if self._dtype == None else self._dtype,
86 87
            persistable=True)

Y
yuyang18 已提交
88
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
89 90 91 92
        """
        get global decayed learning rate
        :return:
        """
93 94
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
95
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
96

Q
Qiao Longfei 已提交
97 98 99 100 101
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

102 103 104 105
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
106
        if type(param_lr) == Variable:
107
            print("returns updated param lr ", param_lr)
W
Wu Yi 已提交
108
            return param_lr
Q
qiaolongfei 已提交
109
        else:
W
Wu Yi 已提交
110
            if param_lr == 1.0:
Y
yuyang18 已提交
111
                return self._global_learning_rate()
W
Wu Yi 已提交
112
            else:
Y
yuyang18 已提交
113
                return self._global_learning_rate() * param_lr
114 115 116 117 118 119 120

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
121
        """
122 123
        pass

124
    def _finish_update(self, block, parameters_and_grads):
125 126 127 128 129 130 131 132
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
133
            None
134 135 136
        """
        pass

137 138 139 140 141 142
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
143 144 145 146 147 148 149 150 151
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
152 153
        if self._name is not None:
            name = self._name + "_" + name
154 155
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
156
            raise Exception("Accumulator {} already exists for parameter {}".
157
                            format(name, param.name))
158 159
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
160 161
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
162
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
163
            persistable=True,
F
fengjiayi 已提交
164
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
165
            type=param.type,
166
            shape=shape)
Q
Qiao Longfei 已提交
167
        self.helper.set_variable_initializer(
168
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
169
        self._accumulators[name][param.name] = var
170
        return var
171 172 173 174 175 176 177 178 179 180 181

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
182 183
        if self._name is not None:
            name = self._name + "_" + name
184 185 186 187 188 189
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Y
yuyang18 已提交
190 191 192 193
    def _create_optimization_pass(self,
                                  parameters_and_grads,
                                  loss,
                                  startup_program=None):
Q
Qiao Longfei 已提交
194 195 196
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
197 198 199
          loss(Variable): the target that this optimization is for.
          parameters_and_grads(list(tuple(Variable, Variable))):
          a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
200 201

        Returns:
202 203 204 205
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
206
        """
207 208 209 210 211
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
212
        # for parameters and extend _finish_update method to add custom ops.
213 214

        # Create any accumulators
Q
Qiao Longfei 已提交
215
        program = loss.block.program
D
dzhwinter 已提交
216
        self._dtype = loss.dtype
217
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
218 219
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
220 221 222
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
223
            self._create_global_learning_rate()
224 225 226

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
227 228
                if param_and_grad[1] is None:
                    continue
W
Wu Yi 已提交
229
                with param_and_grad[0].block.program._optimized_guard(
230
                        param_and_grad), name_scope("optimizer"):
231
                    if param_and_grad[0].trainable is True:
Y
yuyang18 已提交
232 233 234
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
235 236 237

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
238
            self._finish_update(loss.block, parameters_and_grads)
239

Y
Yancey1989 已提交
240
            end = len(global_block.ops)
W
Wu Yi 已提交
241
            return global_block._slice_ops(start, end)
Q
Qiao Longfei 已提交
242

Q
Qiao Longfei 已提交
243 244
    def minimize(self,
                 loss,
245
                 startup_program=None,
Q
Qiao Longfei 已提交
246 247
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
248 249
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
250
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
251 252
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
253
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
254
                                       [error_clip_callback])
Y
Yu Yang 已提交
255

Y
Yu Yang 已提交
256 257
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

Y
Yu Yang 已提交
258 259
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
260
        # Add regularization if any
D
dzhwinter 已提交
261 262
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
263

Y
yuyang18 已提交
264 265
        optimize_ops = self._create_optimization_pass(params_grads, loss,
                                                      startup_program)
T
typhoonzero 已提交
266
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
267 268 269


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
270 271 272 273 274 275 276 277 278 279
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
280 281 282
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
283 284 285 286

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
287
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
288
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
289 290
    """

X
Xin Pan 已提交
291
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
292
        assert learning_rate is not None
Q
Qiao Longfei 已提交
293
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
294 295 296
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
297 298
        self.type = "sgd"

299 300
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
301

Q
Qiao Longfei 已提交
302 303 304 305 306 307
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
308
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
309
            },
310
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
311 312

        return sgd_op
313 314 315


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

330
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
331 332 333

        & else:

Q
qiaolongfei 已提交
334
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
335 336 337 338 339 340

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
341 342 343
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
344 345 346 347

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
348
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
349
            optimizer.minimize(cost)
350 351 352
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
353 354 355 356 357 358
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
359 360
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
361
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
362 363 364
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
365 366
        self.type = "momentum"
        self._momentum = momentum
367
        self._use_nesterov = bool(use_nesterov)
368 369 370 371 372

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
373
            self._add_accumulator(self._velocity_acc_str, p)
374 375 376 377 378 379 380 381 382 383 384 385 386

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
387
                "LearningRate": self._create_param_lr(param_and_grad)
388 389 390 391 392
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
393
            attrs={"mu": self._momentum,
394
                   "use_nesterov": self._use_nesterov})
395 396

        return momentum_op
397 398 399


class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
420 421 422
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
423 424 425 426 427 428

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
429 430 431
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
432 433 434 435 436
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
437 438
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
439
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
440 441 442
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
443 444 445 446 447 448 449
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
450
            self._add_accumulator(self._moment_acc_str, p)
451 452 453 454 455 456 457

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

458
        # Create the adagrad optimizer op
459 460 461 462 463 464
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
465
                "LearningRate": self._create_param_lr(param_and_grad)
466 467 468 469 470 471
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
472 473 474


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
502 503 504
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
505 506 507 508 509 510 511

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

512 513 514
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
515 516
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
517 518 519 520 521

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
522
                 epsilon=1e-8,
X
Xin Pan 已提交
523 524
                 regularization=None,
                 name=None):
525 526 527 528
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
529
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
530 531 532
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
533 534 535 536 537 538 539 540 541 542
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
543 544
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
545 546 547 548 549 550 551 552 553 554 555 556
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
557 558 559 560 561 562 563 564

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
565 566 567 568 569
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

570
        # create the adam optimize op
571 572 573 574 575
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
576
                "LearningRate": self._create_param_lr(param_and_grad),
577 578
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
579 580
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
581 582 583 584 585 586 587 588 589 590 591 592 593 594
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

595
    def _finish_update(self, block, param_and_grads):
596 597 598
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
599
        main_block = block.program.global_block()
600 601 602
        for param, grad in param_and_grads:
            if grad is None:
                continue
W
Wu Yi 已提交
603
            with param.block.program._optimized_guard([param, grad]):
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
                    attrs={"scale": self._beta2})
619 620 621


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
652 653 654
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
655 656 657 658 659 660

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
661 662 663
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
664
    _beta1_pow_acc_str = "beta1_pow_acc"
665 666 667 668 669

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
670
                 epsilon=1e-8,
X
Xin Pan 已提交
671 672
                 regularization=None,
                 name=None):
673 674 675 676
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
677
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
678 679 680
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
681 682 683 684 685 686 687 688
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
689 690
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
691 692 693 694 695 696
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
697 698 699 700 701 702 703

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
704 705
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
706 707 708 709 710 711
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
712
                "LearningRate": self._create_param_lr(param_and_grad),
713 714
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
715
                "Beta1Pow": beta1_pow_acc
716 717 718 719 720 721 722 723 724 725 726 727 728 729
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

730
    def _finish_update(self, block, parameters_and_grads):
731 732 733
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
734
        main_block = block.program.global_block()
735 736 737
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
W
Wu Yi 已提交
738
            with param.block.program._optimized_guard([param, grad]):
739 740 741 742 743 744 745
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})
746 747 748


class DecayedAdagradOptimizer(Optimizer):
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
771 772 773
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
774 775 776 777 778 779

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
780 781 782
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
783 784 785 786 787 788
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
789 790 791 792
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
793
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
794 795 796
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
827 828


829
class AdadeltaOptimizer(Optimizer):
830 831
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
832

833
    Simple Adadelta optimizer with average squared grad state and
834
    average squared update state.
835 836 837 838 839 840 841 842 843 844 845 846
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
847
        learning_rate(float): global learning rate
848 849
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
850 851 852
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
853 854 855 856 857 858 859

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
860
    """
861

862 863 864
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
865 866 867 868 869 870
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
871 872 873 874 875 876
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
877
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
878 879 880
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
881 882 883 884 885
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
886 887
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
888 889 890 891 892 893

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
894 895
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
922 923 924 925 926 927 928 929 930 931
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
932
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
933 934 935 936

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
937
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
938 939 940 941 942 943

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
944
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
960 961 962 963
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
964
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
965 966 967 968 969 970
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
971
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
972 973 974
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
975
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
976
            set 0.0 by default.
977 978 979 980
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
981 982 983
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
997
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
998 999 1000 1001 1002 1003

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1004
                 centered=False,
X
Xin Pan 已提交
1005 1006
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1007
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1008 1009 1010
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1024
        self._centered = centered
Q
qingqing01 已提交
1025 1026 1027 1028 1029 1030 1031 1032

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1033
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1043 1044
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1045 1046 1047 1048 1049 1050 1051
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1052
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1053 1054 1055 1056 1057
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1058 1059
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1060 1061 1062 1063
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1064 1065
                "momentum": self._momentum,
                "centered": self._centered
Q
qingqing01 已提交
1066 1067 1068 1069 1070
            })

        return rmsprop_op


Q
qiaolongfei 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):
X
Xin Pan 已提交
1116 1117 1118
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1133 1134 1135 1136 1137 1138 1139
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1140
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1141 1142 1143
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
                   "lr_power": self._lr_power})

        return ftrl_op


1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1203
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1204
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1205
Ftrl = FtrlOptimizer
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1221 1222 1223
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1224
    Examples:
Q
qiaolongfei 已提交
1225 1226 1227

      .. code-block:: python

1228
        optimizer = fluid.optimizer.Momentum()
1229 1230
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1231 1232 1233 1234 1235
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1236 1237 1238 1239

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1240 1241 1242
    """

    def __init__(self,
W
wanghaoshuang 已提交
1243
                 average_window_rate,
1244 1245
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1246 1247 1248 1249
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1250 1251 1252
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1253

1254
        self.params_grads = []
1255 1256
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1257
            if param.do_model_average != False:
1258 1259 1260 1261
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1262
                    stop_gradient=True)
1263
                self.params_grads.append((param, grad))
1264

1265
        for param, grad in self.params_grads:
1266 1267
            if grad is None:
                continue
W
Wu Yi 已提交
1268
            with param.block.program._optimized_guard([param, grad]):
1269
                self._append_average_accumulate_op(param)
1270

1271 1272 1273 1274
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1275
                self._add_average_apply_op(block, param_grad)
1276 1277 1278 1279 1280

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1281
                self._add_average_restore_op(block, param_grad)
1282

1283
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1284 1285 1286 1287 1288 1289
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1290
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1291
        old_num_accumulates = block._clone_variable(
1292
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1293
        num_updates = block._clone_variable(
1294 1295 1296 1297 1298 1299
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1300 1301 1302 1303
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
1304 1305 1306
        layers.elementwise_div(x=sum, y=tmp, out=param)

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1307 1308
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

1348 1349
    @contextmanager
    def apply(self, executor, need_restore=True):
1350 1351
        """Apply average values to parameters of current model.
        """
1352 1353 1354 1355 1356 1357
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1358 1359 1360 1361

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1362
        executor.run(self.restore_program)