executor.cc 21.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
17
#include <memory>
18
#include <unordered_map>
19
#include <unordered_set>
S
sneaxiy 已提交
20
#include <utility>
D
dongdaxiang 已提交
21 22 23
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
24
#include "paddle/fluid/framework/data_type.h"
Y
Yi Wang 已提交
25 26 27 28 29
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
30 31
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
32
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
33
#include "paddle/fluid/framework/variable_helper.h"
Z
Zeng Jinle 已提交
34
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
35
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
37
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
39
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
40

D
dzhwinter 已提交
41
DECLARE_bool(benchmark);
42
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
43 44 45

namespace paddle {
namespace framework {
X
Xin Pan 已提交
46 47 48 49 50
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
51

Q
Qiao Longfei 已提交
52
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
53 54 55 56 57
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
Z
Zeng Jinle 已提交
58 59 60
  // If gc is enabled and block size > 1
  if (prog_.Size() > 1) {
    operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
61 62 63
        prog_, block_id_, ops_);
    operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(prog_, block_id_,
                                                               ops_);
Z
Zeng Jinle 已提交
64
    operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
65
        prog_, block_id_, ops_);
Z
Zeng Jinle 已提交
66
  }
67 68 69 70 71 72

  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
  }

S
sneaxiy 已提交
73
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
74
}
Y
Yu Yang 已提交
75

Q
Qiao Longfei 已提交
76
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
77
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
78
}
Y
Yu Yang 已提交
79

D
dzhwinter 已提交
80
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
81

82 83 84 85 86 87 88 89 90 91
Executor::~Executor() {
#ifdef PADDLE_WITH_MKLDNN
  // Clear mkl-dnn cache, unless explicitly
  // (as set in constructor) marked not to do so
  // this is needed to have mkl-dnn unit tests working
  if (platform::is_cpu_place(place_)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place_);
    dev_ctx->ResetBlobMap();
92 93
    platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
        paddle::framework::DataLayout::kNCHW);
94 95 96 97
  }
#endif
}

Y
Yancey1989 已提交
98
void Executor::Close() {
W
Wu Yi 已提交
99
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
100 101
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
102 103 104
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
105
#endif
Y
Yancey1989 已提交
106
}
W
Wu Yi 已提交
107

L
Liu Yiqun 已提交
108 109
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
110
  VLOG(3) << "Creating Variables for block " << block_id;
L
Liu Yiqun 已提交
111
  auto& global_block = pdesc.Block(block_id);
112 113 114 115 116 117 118 119 120 121 122 123
  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }
  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
124
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
125 126
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
127 128
      } else {
        auto* ptr = scope->Var(var->Name());
129
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
130 131
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
132 133 134 135 136
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
137
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
138 139
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
140 141 142 143
    }
  }
}

144 145 146
std::shared_ptr<TrainerBase> Executor::InitForDataset(
    const ProgramDesc& main_program, const std::string& trainer_desc_str,
    Scope* scope, Dataset* dataset) {
D
dongdaxiang 已提交
147 148
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
H
hutuxian 已提交
149
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
150 151 152 153
  PADDLE_ENFORCE_EQ(success, true,
                    platform::errors::PreconditionNotMet(
                        "Fail to parse TrainerDesc from string:\n%s",
                        trainer_desc_str.c_str()));
D
dongdaxiang 已提交
154 155 156 157 158 159 160 161
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
162
  trainer->SetScope(scope);
D
dongdaxiang 已提交
163 164 165 166 167
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
168 169 170 171
  return trainer;
}

void Executor::RunFromDataset(std::shared_ptr<TrainerBase> trainer) {
172 173 174
  PADDLE_ENFORCE_NOT_NULL(
      trainer, platform::errors::InvalidArgument(
                   "Trainer is nullptr, invoke InitForDataset first"));
D
dongdaxiang 已提交
175 176 177
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
D
Dong Daxiang 已提交
178 179 180
}

void Executor::ReleaseTrainer(std::shared_ptr<TrainerBase> trainer) {
D
dongdaxiang 已提交
181 182 183
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
}
D
dongdaxiang 已提交
184

Y
Yu Yang 已提交
185
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
186 187
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
188
                   bool force_disable_gc, bool keep_kid_scopes) {
X
Xin Pan 已提交
189
  platform::RecordBlock b(block_id);
190
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
191
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
192 193
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars,
                     keep_kid_scopes);
Q
qijun 已提交
194 195
}

196 197 198 199 200 201 202
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
203
    const BlockDesc& block,
L
Liu Yiqun 已提交
204
    const std::map<std::string, const LoDTensor*>& feed_targets,
205 206
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
207
  for (auto* op : block.AllOps()) {
208 209
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
210
      // The input variable's name of feed_op should be feed_holder_name.
211 212 213 214 215
      PADDLE_ENFORCE_EQ(
          op->Input("X")[0], feed_holder_name,
          platform::errors::PreconditionNotMet(
              "Input to feed op should be '%s', but received '%s'.",
              feed_holder_name, op->Input("X")[0]));
216
      std::string feed_target_name = op->Output("Out")[0];
217 218 219 220 221
      PADDLE_ENFORCE_NE(feed_targets.find(feed_target_name), feed_targets.end(),
                        platform::errors::PreconditionNotMet(
                            "Feed operator output name '%s' cannot be found in "
                            "'feed_targets'",
                            feed_target_name));
222 223 224 225 226 227
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
228 229 230 231
        platform::errors::PreconditionNotMet(
            "The number of feed operators should match 'feed_targets', but "
            "received feed_count: %zu, required feed_targets.size(): %zu.",
            feed_count, feed_targets.size()));
232

233
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
234
      // When feed operator are present, so should be feed_holder.
235
      auto var = block.FindVar(feed_holder_name);
236 237 238 239 240 241 242 243 244 245
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::PreconditionNotMet(
              "Block should already have a '%s' variable", feed_holder_name));
      PADDLE_ENFORCE_EQ(
          var->GetType(), proto::VarType::FEED_MINIBATCH,
          platform::errors::PreconditionNotMet(
              "'%s' variable should be 'FEED_MINIBATCH' type, but received "
              "'%s'.",
              feed_holder_name, DataTypeToString(var->GetType())));
246
    }
247 248 249 250 251 252 253 254 255 256 257 258
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
259
    const BlockDesc& block,
260
    const std::map<std::string, FetchType*>& fetch_targets,
261 262
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
263
  for (auto* op : block.AllOps()) {
264 265
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
266
      // The output variable's name of fetch_op should be fetch_holder_name.
267 268 269 270 271
      PADDLE_ENFORCE_EQ(
          op->Output("Out")[0], fetch_holder_name,
          platform::errors::PreconditionNotMet(
              "Output of fetch op should be '%s', but received '%s'.",
              fetch_holder_name, op->Output("Out")[0]));
272
      std::string fetch_target_name = op->Input("X")[0];
273 274 275 276 277 278
      PADDLE_ENFORCE_NE(fetch_targets.find(fetch_target_name),
                        fetch_targets.end(),
                        platform::errors::NotFound(
                            "Fetch operator input name '%s' cannot be found in "
                            "'fetch_targets'.",
                            fetch_target_name));
279 280 281 282 283 284
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
285 286 287 288
        platform::errors::PreconditionNotMet(
            "The number of fetch operators should match 'fetch_targets', but "
            "received fetch_count: %zu, required fetch_targets.size(): %zu.",
            fetch_count, fetch_targets.size()));
289

290
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
291
      // When fetch operator are present, so should be fetch_holder.
292
      auto var = block.FindVar(fetch_holder_name);
293 294 295 296 297 298 299 300 301
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::PreconditionNotMet(
              "Block should already have a '%s' variable.", fetch_holder_name));
      PADDLE_ENFORCE_EQ(
          var->GetType(), proto::VarType::FETCH_LIST,
          platform::errors::PreconditionNotMet(
              "'%s' variable should be 'FETCH_LIST' type, but received '%s'.",
              fetch_holder_name, DataTypeToString(var->GetType())));
302
    }
303 304 305 306 307 308
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
309
                   std::map<std::string, const LoDTensor*>* feed_targets,
310
                   std::map<std::string, FetchType*>* fetch_targets,
W
Wu Yi 已提交
311 312
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
313
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
314
  platform::RecordBlock b(kProgramId);
315
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
316
  bool has_feed_ops =
317
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
318
  bool has_fetch_ops =
319
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
320 321

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
322
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
323
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
324 325
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
326
  }
327 328
  auto* global_block = copy_program->MutableBlock(0);

329
  if (!has_feed_ops) {
330 331
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
332
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
333 334 335
    feed_holder->SetPersistable(true);

    int i = 0;
336
    for (auto& feed_target : (*feed_targets)) {
337
      std::string var_name = feed_target.first;
M
minqiyang 已提交
338
      VLOG(3) << "feed target's name: " << var_name;
339 340 341 342 343 344 345 346 347 348 349 350 351

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

352
  if (!has_fetch_ops) {
353 354
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
355
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
356 357 358
    fetch_holder->SetPersistable(true);

    int i = 0;
359
    for (auto& fetch_target : (*fetch_targets)) {
360
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
361
      VLOG(3) << "fetch target's name: " << var_name;
362 363 364 365 366 367 368 369 370 371 372 373 374

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

375
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
376 377 378
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
379 380
}

Q
Qiao Longfei 已提交
381
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
382
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
383
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
384 385
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
386 387 388 389 390
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size(),
                    platform::errors::InvalidArgument(
                        "Input block id = %d, but it should be less than "
                        "program.size() which is %d",
                        static_cast<size_t>(block_id), program.Size()));
Y
Yu Yang 已提交
391 392 393 394
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
S
sneaxiy 已提交
395
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
396
  return ctx;
Y
Yu Yang 已提交
397 398
}

T
refine  
typhoonzero 已提交
399
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
400
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
401 402
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
403
  PADDLE_ENFORCE_EQ(
S
fix bug  
sneaxiy 已提交
404
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
405 406 407 408
      true,
      platform::errors::InvalidArgument("skip_ref_cnt_vars should be either "
                                        "empty or equals to block number %d",
                                        block_ids.size()));
T
typhoonzero 已提交
409
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
410
  size_t idx = 0;
T
typhoonzero 已提交
411
  for (auto& bid : block_ids) {
412 413 414 415 416
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size(),
                      platform::errors::InvalidArgument(
                          "Input block id = %zu, but it should be less than "
                          "program.size() which is %zu",
                          static_cast<size_t>(bid), program.Size()));
S
sneaxiy 已提交
417
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
418 419 420 421
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
422 423 424 425 426
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
427
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
428
    ++idx;
T
typhoonzero 已提交
429 430 431 432
  }
  return result;
}

433 434 435 436 437
void Executor::RunPartialPreparedContext(ExecutorPrepareContext* ctx,
                                         Scope* scope, int64_t start_op_index,
                                         int64_t end_op_index,
                                         bool create_local_scope,
                                         bool create_vars, bool keep_kids) {
438
  platform::RecordBlock b(kProgramId);
439 440
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope shouldn't be null"));
Y
Yu Yang 已提交
441 442 443 444
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
445 446
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
447
  }
Y
Yu Yang 已提交
448

S
sneaxiy 已提交
449
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
450
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
451
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
452 453
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
454
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
455
        gc.reset(new UnsafeFastGPUGarbageCollector(
456
            BOOST_GET_CONST(platform::CUDAPlace, place_), max_memory_size));
S
fix bug  
sneaxiy 已提交
457
      } else {
S
sneaxiy 已提交
458
        gc.reset(new DefaultStreamGarbageCollector(
459
            BOOST_GET_CONST(platform::CUDAPlace, place_), max_memory_size));
S
fix bug  
sneaxiy 已提交
460 461
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
462
#endif
463 464
      gc.reset(new CPUGarbageCollector(
          BOOST_GET_CONST(platform::CPUPlace, place_), max_memory_size));
S
sneaxiy 已提交
465 466 467 468 469
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

470 471
  for (int64_t i = start_op_index; i < end_op_index; ++i) {
    auto& op = ctx->ops_[i];
472
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
473
    if (gc) {
S
sneaxiy 已提交
474
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
475
    }
Y
Yu Yang 已提交
476
  }
S
sneaxiy 已提交
477

S
fix bug  
sneaxiy 已提交
478
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
479

Q
qiaolongfei 已提交
480
  if (local_scope != scope) {
Y
Yu Yang 已提交
481
    scope->DeleteScope(local_scope);
482
  } else {
Q
qiaolongfei 已提交
483 484 485 486 487
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
488 489
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
490

Q
qiaolongfei 已提交
491 492
      scope->DropKids();
    }
Y
Yu Yang 已提交
493 494 495
  }
}

496 497 498 499 500 501 502 503 504
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
  int64_t start_op_index = 0;
  int64_t end_op_index = ctx->ops_.size();
  RunPartialPreparedContext(ctx, scope, start_op_index, end_op_index,
                            create_local_scope, create_vars, keep_kids);
}

505 506
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
507
    std::map<std::string, const LoDTensor*>* feed_targets,
508
    std::map<std::string, FetchType*>* fetch_targets, bool create_local_scope,
W
Wu Yi 已提交
509 510
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
511 512
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

513 514 515 516 517
  PADDLE_ENFORCE_EQ(
      has_feed_operators(global_block, *feed_targets, feed_holder_name), true,
      platform::errors::PreconditionNotMet(
          "Program in ExecutorPrepareContext should has feed_ops."));
  PADDLE_ENFORCE_EQ(
518
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
519 520
      true, platform::errors::PreconditionNotMet(
                "Program in the prepared context should has fetch_ops."));
521

522 523 524 525
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
526
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
527 528
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
529 530 531
    }
  }

W
Wu Yi 已提交
532
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
533 534 535 536 537

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
538
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
539
      *(*fetch_targets)[fetch_target_name] =
540 541 542 543 544
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

545 546
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
547
  VLOG(3) << "use_mkldnn=True";
548 549 550 551 552 553 554 555
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
556 557 558
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
559 560
#endif
}
Q
qijun 已提交
561 562
}  // namespace framework
}  // namespace paddle