executor.cc 19.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
17
#include <memory>
18
#include <unordered_map>
19
#include <unordered_set>
S
sneaxiy 已提交
20
#include <utility>
D
dongdaxiang 已提交
21 22 23
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
24 25 26 27 28
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
29 30
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/framework/variable_helper.h"
Z
Zeng Jinle 已提交
33
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
34
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
36
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
38
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
39

40
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
41
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
42 43
#endif

D
dzhwinter 已提交
44
DECLARE_bool(benchmark);
45
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
46
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
47 48 49

namespace paddle {
namespace framework {
X
Xin Pan 已提交
50 51 52 53 54
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
55

Q
Qiao Longfei 已提交
56
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
57 58 59 60 61
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
Z
Zeng Jinle 已提交
62 63 64 65 66 67 68 69 70 71 72
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    // FIXME(zjl): There is difference when ngraph and gc are both enabled
    // in unittests. I do not know why it happens. Maybe ngraph engine
    // would cache some variables?
    LOG_FIRST_N(WARNING, 1)
        << "FLAGS_use_ngraph=True, garbage collection strategy is "
           "disabled in Executor";
    force_disable_gc = true;
  }
#endif
S
sneaxiy 已提交
73 74 75
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
76
  }
Z
Zeng Jinle 已提交
77 78 79 80

  // If gc is enabled and block size > 1
  if (prog_.Size() > 1) {
    operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
81 82 83
        prog_, block_id_, ops_);
    operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(prog_, block_id_,
                                                               ops_);
Z
Zeng Jinle 已提交
84
    operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
85
        prog_, block_id_, ops_);
Z
Zeng Jinle 已提交
86
  }
S
sneaxiy 已提交
87
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
88
}
Y
Yu Yang 已提交
89

Q
Qiao Longfei 已提交
90
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
91
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
92
}
Y
Yu Yang 已提交
93

D
dzhwinter 已提交
94
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109
Executor::~Executor() {
#ifdef PADDLE_WITH_MKLDNN
  // Clear mkl-dnn cache, unless explicitly
  // (as set in constructor) marked not to do so
  // this is needed to have mkl-dnn unit tests working
  if (platform::is_cpu_place(place_)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place_);
    dev_ctx->ResetBlobMap();
  }
#endif
}

Y
Yancey1989 已提交
110
void Executor::Close() {
W
Wu Yi 已提交
111
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
112 113
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
114 115 116
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
117
#endif
Y
Yancey1989 已提交
118
}
W
Wu Yi 已提交
119

L
Liu Yiqun 已提交
120 121 122
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
123 124 125 126 127 128 129 130 131 132 133 134 135 136

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
137
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
138 139
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
140 141
      } else {
        auto* ptr = scope->Var(var->Name());
142
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
143 144
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
145 146 147 148 149
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
150
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
151 152
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
153 154 155 156
    }
  }
}

157 158 159
std::shared_ptr<TrainerBase> Executor::InitForDataset(
    const ProgramDesc& main_program, const std::string& trainer_desc_str,
    Scope* scope, Dataset* dataset) {
D
dongdaxiang 已提交
160 161
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
H
hutuxian 已提交
162
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
163 164
  PADDLE_ENFORCE_EQ(success, true, "Fail to parse TrainerDesc from string:\n%s",
                    trainer_desc_str.c_str());
D
dongdaxiang 已提交
165 166 167 168 169 170 171 172
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
173
  trainer->SetScope(scope);
D
dongdaxiang 已提交
174 175 176 177 178
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
179 180 181 182 183 184
  return trainer;
}

void Executor::RunFromDataset(std::shared_ptr<TrainerBase> trainer) {
  PADDLE_ENFORCE_NE(trainer, nullptr,
                    "Trainer is nullptr, invoke InitForDataset first");
D
dongdaxiang 已提交
185 186 187 188 189 190
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
}
D
dongdaxiang 已提交
191

Y
Yu Yang 已提交
192
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
193 194 195
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
196
  platform::RecordBlock b(block_id);
197
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
198
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
199
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
200 201
}

202 203 204 205 206 207 208
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
209
    const BlockDesc& block,
L
Liu Yiqun 已提交
210
    const std::map<std::string, const LoDTensor*>& feed_targets,
211 212
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
213
  for (auto* op : block.AllOps()) {
214 215
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
216
      // The input variable's name of feed_op should be feed_holder_name.
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

232
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
233
      // When feed operator are present, so should be feed_holder.
234 235 236 237 238 239 240
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
241 242 243 244 245 246 247 248 249 250 251 252
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
253 254
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
255 256
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
257
  for (auto* op : block.AllOps()) {
258 259
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
260
      // The output variable's name of fetch_op should be fetch_holder_name.
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

276
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
277
      // When fetch operator are present, so should be fetch_holder.
278 279 280 281 282 283 284
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
285 286 287 288 289 290
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
291 292
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
293 294
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
295
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
296
  platform::RecordBlock b(kProgramId);
297
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
298
  bool has_feed_ops =
299
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
300
  bool has_fetch_ops =
301
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
302 303

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
304
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
305
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
306 307
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
308
  }
309 310
  auto* global_block = copy_program->MutableBlock(0);

311
  if (!has_feed_ops) {
312 313
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
314
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
315 316 317
    feed_holder->SetPersistable(true);

    int i = 0;
318
    for (auto& feed_target : (*feed_targets)) {
319
      std::string var_name = feed_target.first;
M
minqiyang 已提交
320
      VLOG(3) << "feed target's name: " << var_name;
321 322 323 324 325 326 327 328 329 330 331 332 333

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

334
  if (!has_fetch_ops) {
335 336
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
337
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
338 339 340
    fetch_holder->SetPersistable(true);

    int i = 0;
341
    for (auto& fetch_target : (*fetch_targets)) {
342
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
343
      VLOG(3) << "fetch target's name: " << var_name;
344 345 346 347 348 349 350 351 352 353 354 355 356

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

357
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
358 359 360
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
361 362
}

Q
Qiao Longfei 已提交
363
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
364
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
365
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
366 367
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
368 369 370 371 372
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
373
#ifdef PADDLE_WITH_NGRAPH
374
  if (FLAGS_use_ngraph && ctx->block_id_ == 0) {
375 376 377 378
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
379
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
380
  return ctx;
Y
Yu Yang 已提交
381 382
}

T
refine  
typhoonzero 已提交
383
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
384
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
385 386
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
387 388 389 390
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
391
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
392
  size_t idx = 0;
T
typhoonzero 已提交
393 394
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
395
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
396 397 398 399
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
400 401 402 403 404
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
405
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
406
    ++idx;
T
typhoonzero 已提交
407 408 409 410
  }
  return result;
}

Y
Yu Yang 已提交
411
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
412 413
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
414
  platform::RecordBlock b(kProgramId);
415
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
416 417 418 419
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
420 421
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
422
  }
Y
Yu Yang 已提交
423

S
sneaxiy 已提交
424
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
425
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
426
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
427 428
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
429
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
430
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
431 432
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
433
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
434 435 436
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
437
#endif
S
sneaxiy 已提交
438 439
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
440 441 442 443 444
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
445
  for (auto& op : ctx->ops_) {
446
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
447
    if (gc) {
S
sneaxiy 已提交
448
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
449
    }
Y
Yu Yang 已提交
450
  }
S
sneaxiy 已提交
451

S
fix bug  
sneaxiy 已提交
452
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
453

Q
qiaolongfei 已提交
454
  if (local_scope != scope) {
Y
Yu Yang 已提交
455
    scope->DeleteScope(local_scope);
456
  } else {
Q
qiaolongfei 已提交
457 458 459 460 461
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
462 463
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
464 465
      scope->DropKids();
    }
Y
Yu Yang 已提交
466 467 468
  }
}

469 470
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
471
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
472 473 474
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
475 476
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

477
  PADDLE_ENFORCE(
478
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
479 480
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
481
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
482 483
      "Program in the prepared context should has fetch_ops.");

484 485 486 487 488
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
489 490
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
491 492 493
    }
  }

W
Wu Yi 已提交
494
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
495 496 497 498 499 500

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
501
      *(*fetch_targets)[fetch_target_name] =
502 503 504 505 506
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

507 508
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
509
  VLOG(3) << "use_mkldnn=True";
510 511 512 513 514 515 516 517
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
518 519 520
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
521 522
#endif
}
Q
qijun 已提交
523 524
}  // namespace framework
}  // namespace paddle