executor.cc 17.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
16

Y
Yi Wang 已提交
17 18 19 20 21
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
G
gongweibao 已提交
22
#include "paddle/fluid/operators/detail/macros.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
24
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
25

D
dzhwinter 已提交
26
DECLARE_bool(benchmark);
27
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
28 29 30

namespace paddle {
namespace framework {
X
Xin Pan 已提交
31 32 33 34 35
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
36

Q
Qiao Longfei 已提交
37 38
ExecutorPrepareContext::ExecutorPrepareContext(
    const framework::ProgramDesc& prog, size_t block_id)
S
sneaxiy 已提交
39 40 41 42 43
    : prog_(prog), block_id_(block_id) {
  if (GetEagerDeletionThreshold() >= 0) {
    ref_cnts_ = GetNonPersistableReferenceCount<int>(prog_, block_id_);
  }
}
Y
Yu Yang 已提交
44

Q
Qiao Longfei 已提交
45 46 47
ExecutorPrepareContext::~ExecutorPrepareContext() {
  VLOG(5) << "destroy ExecutorPrepareContext";
}
Y
Yu Yang 已提交
48

S
sneaxiy 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
template <typename RefCntMap>
static void DeleteUnusedTensors(const Scope& scope, const OperatorBase* op,
                                GarbageCollector<Tensor>* gc,
                                RefCntMap* ref_cnts) {
  std::unordered_set<Tensor*> erase_tensors;

  auto handler = [&](const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        auto it = ref_cnts->find(name);
        if (it == ref_cnts->end()) continue;
        if ((it->second)-- == 1) {
          auto* var = scope.FindVar(name);
          if (var != nullptr) {
            VLOG(10) << "Erase tensor \'" << name << "\'";
            if (var->IsType<LoDTensor>()) {
              erase_tensors.insert(var->GetMutable<LoDTensor>());
            } else if (var->IsType<SelectedRows>()) {
              erase_tensors.insert(
                  var->GetMutable<SelectedRows>()->mutable_value());
            }
          }
        }
      }
    }
  };

  handler(op->Inputs());
  handler(op->Outputs());

  if (!erase_tensors.empty()) {
    gc->Add(erase_tensors);
  }
}

D
dzhwinter 已提交
84
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
85

Y
Yancey1989 已提交
86
void Executor::Close() {
W
Wu Yi 已提交
87
#ifdef PADDLE_WITH_DISTRIBUTE
Y
Yancey1989 已提交
88 89
  ::paddle::operators::distributed::RPCClient::GetInstance<
      ::paddle::operators::distributed::GRPCClient>()
Y
Yancey1989 已提交
90
      ->SendComplete();
W
Wu Yi 已提交
91
#endif
Y
Yancey1989 已提交
92
}
W
Wu Yi 已提交
93

Y
Stash  
Yu Yang 已提交
94
void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
95
  if (var_type == proto::VarType::LOD_TENSOR) {
Q
QI JUN 已提交
96
    var->GetMutable<LoDTensor>();
97
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
Q
QI JUN 已提交
98
    var->GetMutable<SelectedRows>();
99
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
Q
QI JUN 已提交
100
    var->GetMutable<FeedFetchList>();
101
  } else if (var_type == proto::VarType::FETCH_LIST) {
Q
QI JUN 已提交
102
    var->GetMutable<FeedFetchList>();
103
  } else if (var_type == proto::VarType::STEP_SCOPES) {
X
Xin Pan 已提交
104
    var->GetMutable<std::vector<framework::Scope*>>();
105
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
106
    var->GetMutable<LoDRankTable>();
107
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
108
    var->GetMutable<LoDTensorArray>();
109
  } else if (var_type == proto::VarType::PLACE_LIST) {
Y
Yang Yu 已提交
110
    var->GetMutable<platform::PlaceList>();
111
  } else if (var_type == proto::VarType::READER) {
F
fengjiayi 已提交
112
    var->GetMutable<ReaderHolder>();
T
typhoonzero 已提交
113 114
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
Q
QI JUN 已提交
115 116
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
117
        "Variable type %d is not in "
F
fengjiayi 已提交
118
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
X
Xin Pan 已提交
119
        "LOD_RANK_TABLE, PLACE_LIST, READER, RAW]",
Y
Yu Yang 已提交
120
        var_type);
Q
QI JUN 已提交
121 122 123
  }
}

L
Liu Yiqun 已提交
124 125 126
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
127 128 129 130 131 132 133 134 135 136 137 138 139 140

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
141
        InitializeVariable(ptr, var->GetType());
142 143 144 145
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
      } else {
        auto* ptr = scope->Var(var->Name());
146
        InitializeVariable(ptr, var->GetType());
147 148 149 150 151 152 153
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
154
      InitializeVariable(ptr, var->GetType());
155 156 157 158 159 160
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
    }
  }
}

Y
Yu Yang 已提交
161
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
162
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
163
  platform::RecordBlock b(block_id);
164
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
Q
Qiao Longfei 已提交
165 166
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
167 168
}

169 170 171 172 173 174 175
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
176
    const BlockDesc& block,
L
Liu Yiqun 已提交
177
    const std::map<std::string, const LoDTensor*>& feed_targets,
178 179
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
180
  for (auto* op : block.AllOps()) {
181 182
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
183
      // The input variable's name of feed_op should be feed_holder_name.
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

199
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
200
      // When feed operator are present, so should be feed_holder.
201 202 203 204 205 206 207
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
208 209 210 211 212 213 214 215 216 217 218 219
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
220 221
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
222 223
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
224
  for (auto* op : block.AllOps()) {
225 226
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
227
      // The output variable's name of fetch_op should be fetch_holder_name.
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

243
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
244
      // When fetch operator are present, so should be fetch_holder.
245 246 247 248 249 250 251
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
252 253 254 255 256 257
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
258 259
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
260 261
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
262
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
263
  platform::RecordBlock b(kProgramId);
264
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
265
  bool has_feed_ops =
266
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
267
  bool has_fetch_ops =
268
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
269 270

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
271
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
272
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
273 274
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
275
  }
276 277
  auto* global_block = copy_program->MutableBlock(0);

278
  if (!has_feed_ops) {
279 280
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
281
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
282 283 284
    feed_holder->SetPersistable(true);

    int i = 0;
285
    for (auto& feed_target : (*feed_targets)) {
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
      std::string var_name = feed_target.first;
      VLOG(3) << "feed target's name: " << var_name;

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

301
  if (!has_fetch_ops) {
302 303
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
304
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
305 306 307
    fetch_holder->SetPersistable(true);

    int i = 0;
308
    for (auto& fetch_target : (*fetch_targets)) {
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
      std::string var_name = fetch_target.first;
      VLOG(3) << "fetch target's name: " << var_name;

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

324
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
325 326 327
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
328 329
}

Q
Qiao Longfei 已提交
330 331
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
    const ProgramDesc& program, int block_id) {
Q
Qiyang Min 已提交
332 333
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
334 335 336 337 338
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
Q
Qiyang Min 已提交
339
  return ctx;
Y
Yu Yang 已提交
340 341
}

T
refine  
typhoonzero 已提交
342
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
T
typhoonzero 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356
    const ProgramDesc& program, const std::vector<int>& block_ids) {
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
  for (auto& bid : block_ids) {
    auto* ctx = new ExecutorPrepareContext(program, bid);
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
  }
  return result;
}

Y
Yu Yang 已提交
357
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
358 359
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
Y
Yu Yang 已提交
360 361 362 363
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
364 365
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
366
  }
Y
Yu Yang 已提交
367

S
sneaxiy 已提交
368 369
  int64_t max_memory_size = GetEagerDeletionThreshold();
  std::unique_ptr<GarbageCollector<Tensor>> gc;
S
sneaxiy 已提交
370 371 372 373 374 375
  // WhileOp would set keep_kids to false
  // WhileGradOp would need the scopes created in WhileOp
  // Perhaps, we should not perform eager deletion in WhileOp
  // The scopes and variables created by WhileOp would be deleted
  // in WhileGradOp.
  if (max_memory_size >= 0 && !keep_kids) {
S
sneaxiy 已提交
376
    ctx->ResetReferenceCount();
S
sneaxiy 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
      gc.reset(new DefaultStreamGarbageCollector<Tensor>(
          boost::get<platform::CUDAPlace>(place_), max_memory_size));
    } else {
#endif
      gc.reset(new CPUGarbageCollector<Tensor>(
          boost::get<platform::CPUPlace>(place_), max_memory_size));
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
390
  for (auto& op : ctx->ops_) {
391
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
392 393

    if (gc != nullptr) {
S
sneaxiy 已提交
394 395
      DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
                          &(ctx->cur_ref_cnts_));
S
sneaxiy 已提交
396
    }
Y
Yang Yang 已提交
397

Y
Yu Yang 已提交
398 399 400 401 402
    if (FLAGS_benchmark) {
      VLOG(2) << "Memory used after operator " + op->Type() + " running: "
              << memory::memory_usage(place_);
    }
  }
S
sneaxiy 已提交
403

S
sneaxiy 已提交
404
  if (gc != nullptr) {
S
sneaxiy 已提交
405
    gc->Wait();
S
sneaxiy 已提交
406
  } else {
S
sneaxiy 已提交
407
    platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
408
  }
S
sneaxiy 已提交
409

Q
qiaolongfei 已提交
410
  if (local_scope != scope) {
Y
Yu Yang 已提交
411
    scope->DeleteScope(local_scope);
412
  } else {
Q
qiaolongfei 已提交
413 414 415 416 417
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
418 419
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
420 421
      scope->DropKids();
    }
Y
Yu Yang 已提交
422
  }
Q
qiaolongfei 已提交
423

Y
Yu Yang 已提交
424 425 426 427 428 429 430 431
  if (FLAGS_benchmark) {
    VLOG(2) << "-------------------------------------------------------";
    VLOG(2) << "Memory used after deleting local scope: "
            << memory::memory_usage(place_);
    VLOG(2) << "-------------------------------------------------------";
  }
}

432 433
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
434
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
435 436 437
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
438 439
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

440
  PADDLE_ENFORCE(
441
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
442 443
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
444
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
445 446
      "Program in the prepared context should has fetch_ops.");

447 448 449 450 451
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
452 453
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
454 455 456
    }
  }

W
Wu Yi 已提交
457
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
458 459 460 461 462 463

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
464
      *(*fetch_targets)[fetch_target_name] =
465 466 467 468 469
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

470 471 472 473 474 475 476 477 478 479 480
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(3) << "use_mkldnn=True";
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
481 482 483
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
484 485 486
#endif
}

Q
qijun 已提交
487 488
}  // namespace framework
}  // namespace paddle