executor.cc 18.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
S
sneaxiy 已提交
17
#include <unordered_set>
18
#include <unordered_map>
S
sneaxiy 已提交
19
#include <utility>
D
dongdaxiang 已提交
20 21 22
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
23 24 25 26 27
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
28 29
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
31
#include "paddle/fluid/framework/variable_helper.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
33
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
35
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
36

37
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
38
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
39
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
40 41
#endif

D
dzhwinter 已提交
42
DECLARE_bool(benchmark);
43
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
44 45 46

namespace paddle {
namespace framework {
X
Xin Pan 已提交
47 48 49 50 51
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
52

Q
Qiao Longfei 已提交
53
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
54 55 56 57 58 59 60 61
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
62
  }
S
sneaxiy 已提交
63
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
64
}
Y
Yu Yang 已提交
65

Q
Qiao Longfei 已提交
66
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
67
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
68
}
Y
Yu Yang 已提交
69

D
dzhwinter 已提交
70
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
71

Y
Yancey1989 已提交
72
void Executor::Close() {
W
Wu Yi 已提交
73
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
74 75
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
76 77 78
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
79
#endif
Y
Yancey1989 已提交
80
}
W
Wu Yi 已提交
81

L
Liu Yiqun 已提交
82 83 84
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
85 86 87 88 89 90 91 92 93 94 95 96 97 98

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
99
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
100 101
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
102 103
      } else {
        auto* ptr = scope->Var(var->Name());
104
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
105 106
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
107 108 109 110 111
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
112
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
113 114
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
115 116 117 118
    }
  }
}

D
dongdaxiang 已提交
119
void Executor::RunFromDataset(const ProgramDesc& main_program,
120
                              Dataset* dataset,
D
dongdaxiang 已提交
121
                              const std::string& trainer_desc_str,
D
dongdaxiang 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
                              const bool debug) {
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
  google::protobuf::TextFormat::ParseFromString(trainer_desc_str,
                                                &trainer_desc);
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
  trainer->SetScope(root_scope_);
  VLOG(3) << "Going to set debug";
  trainer->SetDebug(debug);
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
  VLOG(3) << "Drop current scope kids";
  root_scope_->DropKids();
  return;
}
D
dongdaxiang 已提交
152

Y
Yu Yang 已提交
153
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
154 155 156
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
157
  platform::RecordBlock b(block_id);
158
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
159
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
160
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
161 162
}

163 164 165 166 167 168 169
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
170
    const BlockDesc& block,
L
Liu Yiqun 已提交
171
    const std::map<std::string, const LoDTensor*>& feed_targets,
172 173
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
174
  for (auto* op : block.AllOps()) {
175 176
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
177
      // The input variable's name of feed_op should be feed_holder_name.
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

193
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
194
      // When feed operator are present, so should be feed_holder.
195 196 197 198 199 200 201
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
202 203 204 205 206 207 208 209 210 211 212 213
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
214 215
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
216 217
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
218
  for (auto* op : block.AllOps()) {
219 220
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
221
      // The output variable's name of fetch_op should be fetch_holder_name.
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

237
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
238
      // When fetch operator are present, so should be fetch_holder.
239 240 241 242 243 244 245
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
246 247 248 249 250 251
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
252 253
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
254 255
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
256
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
257
  platform::RecordBlock b(kProgramId);
258
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
259
  bool has_feed_ops =
260
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
261
  bool has_fetch_ops =
262
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
263 264

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
265
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
266
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
267 268
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
269
  }
270 271
  auto* global_block = copy_program->MutableBlock(0);

272
  if (!has_feed_ops) {
273 274
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
275
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
276 277 278
    feed_holder->SetPersistable(true);

    int i = 0;
279
    for (auto& feed_target : (*feed_targets)) {
280
      std::string var_name = feed_target.first;
M
minqiyang 已提交
281
      VLOG(3) << "feed target's name: " << var_name;
282 283 284 285 286 287 288 289 290 291 292 293 294

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

295
  if (!has_fetch_ops) {
296 297
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
298
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
299 300 301
    fetch_holder->SetPersistable(true);

    int i = 0;
302
    for (auto& fetch_target : (*fetch_targets)) {
303
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
304
      VLOG(3) << "fetch target's name: " << var_name;
305 306 307 308 309 310 311 312 313 314 315 316 317

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

318
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
319 320 321
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
322 323
}

Q
Qiao Longfei 已提交
324
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
325
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
326
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
327 328
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
329 330 331 332 333
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
334 335 336 337 338 339
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
340
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
341
  return ctx;
Y
Yu Yang 已提交
342 343
}

T
refine  
typhoonzero 已提交
344
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
345
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
346 347
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
348 349 350 351
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
352
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
353
  size_t idx = 0;
T
typhoonzero 已提交
354 355
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
356
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
357 358 359 360
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
361 362 363 364 365
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
366
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
367
    ++idx;
T
typhoonzero 已提交
368 369 370 371
  }
  return result;
}

Y
Yu Yang 已提交
372
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
373 374
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
375
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
376 377 378 379
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
380 381
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
382
  }
Y
Yu Yang 已提交
383

S
sneaxiy 已提交
384
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
385
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
386 387 388
  // FIXME(zjl): recurrent_op is rather complex, we would
  // disable gc forcely in recurrent_op
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
389 390
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
391
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
392
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
393 394
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
395
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
396 397 398
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
399
#endif
S
sneaxiy 已提交
400 401
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
402 403 404
#ifdef PADDLE_WITH_CUDA
    }
#endif
S
sneaxiy 已提交
405 406
    // If gc is enabled and block size > 1
    if (gc && ctx->prog_.Size() > 1) {
S
sneaxiy 已提交
407 408 409
      operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
                                                                 ctx->ops_);
    }
S
sneaxiy 已提交
410 411
  }

Y
Yu Yang 已提交
412
  for (auto& op : ctx->ops_) {
413
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
414

S
fix bug  
sneaxiy 已提交
415
    if (gc) {
S
sneaxiy 已提交
416
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
417
    }
Y
Yu Yang 已提交
418
  }
S
sneaxiy 已提交
419

S
fix bug  
sneaxiy 已提交
420
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
421

Q
qiaolongfei 已提交
422
  if (local_scope != scope) {
Y
Yu Yang 已提交
423
    scope->DeleteScope(local_scope);
424
  } else {
Q
qiaolongfei 已提交
425 426 427 428 429
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
430 431
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
432 433
      scope->DropKids();
    }
Y
Yu Yang 已提交
434 435 436
  }
}

437 438
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
439
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
440 441 442
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
443 444
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

445
  PADDLE_ENFORCE(
446
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
447 448
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
449
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
450 451
      "Program in the prepared context should has fetch_ops.");

452 453 454 455 456
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
457 458
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
459 460 461
    }
  }

W
Wu Yi 已提交
462
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
463 464 465 466 467 468

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
469
      *(*fetch_targets)[fetch_target_name] =
470 471 472 473 474
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

475 476
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
477
  VLOG(3) << "use_mkldnn=True";
478 479 480 481 482 483 484 485
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
486 487 488
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
489 490
#endif
}
Q
qijun 已提交
491 492
}  // namespace framework
}  // namespace paddle