executor.cc 18.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
S
sneaxiy 已提交
17
#include <unordered_set>
18
#include <unordered_map>
S
sneaxiy 已提交
19
#include <utility>
D
dongdaxiang 已提交
20 21 22
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
23 24 25 26 27
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
28 29
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
31
#include "paddle/fluid/framework/variable_helper.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
33
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
35
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
36

37
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
38
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
39
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
40 41
#endif

D
dzhwinter 已提交
42
DECLARE_bool(benchmark);
43
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
44 45 46

namespace paddle {
namespace framework {
X
Xin Pan 已提交
47 48 49 50 51
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
52

Q
Qiao Longfei 已提交
53
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
54 55 56 57 58 59 60 61
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
62
  }
S
sneaxiy 已提交
63
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
64
}
Y
Yu Yang 已提交
65

Q
Qiao Longfei 已提交
66
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
67
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
68
}
Y
Yu Yang 已提交
69

D
dzhwinter 已提交
70
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
71

Y
Yancey1989 已提交
72
void Executor::Close() {
W
Wu Yi 已提交
73
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
74 75
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
76 77 78
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
79
#endif
Y
Yancey1989 已提交
80
}
W
Wu Yi 已提交
81

L
Liu Yiqun 已提交
82 83 84
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
85 86 87 88 89 90 91 92 93 94 95 96 97 98

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
99
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
100 101
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
102 103
      } else {
        auto* ptr = scope->Var(var->Name());
104
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
105 106
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
107 108 109 110 111
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
112
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
113 114
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
115 116 117 118
    }
  }
}

D
dongdaxiang 已提交
119
void Executor::RunFromDataset(const ProgramDesc& main_program, Scope* scope,
120
                              Dataset* dataset,
D
dongdaxiang 已提交
121
                              const std::string& trainer_desc_str) {
D
dongdaxiang 已提交
122 123 124 125 126 127 128 129 130 131 132 133
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
  google::protobuf::TextFormat::ParseFromString(trainer_desc_str,
                                                &trainer_desc);
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
134
  trainer->SetScope(scope);
D
dongdaxiang 已提交
135 136 137 138 139 140 141 142 143 144 145
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
  VLOG(3) << "Drop current scope kids";
D
dongdaxiang 已提交
146
  scope->DropKids();
D
dongdaxiang 已提交
147 148
  return;
}
D
dongdaxiang 已提交
149

Y
Yu Yang 已提交
150
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
151 152 153
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
154
  platform::RecordBlock b(block_id);
155
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
156
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
157
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
158 159
}

160 161 162 163 164 165 166
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
167
    const BlockDesc& block,
L
Liu Yiqun 已提交
168
    const std::map<std::string, const LoDTensor*>& feed_targets,
169 170
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
171
  for (auto* op : block.AllOps()) {
172 173
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
174
      // The input variable's name of feed_op should be feed_holder_name.
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

190
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
191
      // When feed operator are present, so should be feed_holder.
192 193 194 195 196 197 198
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
199 200 201 202 203 204 205 206 207 208 209 210
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
211 212
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
213 214
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
215
  for (auto* op : block.AllOps()) {
216 217
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
218
      // The output variable's name of fetch_op should be fetch_holder_name.
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

234
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
235
      // When fetch operator are present, so should be fetch_holder.
236 237 238 239 240 241 242
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
243 244 245 246 247 248
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
249 250
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
251 252
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
253
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
254
  platform::RecordBlock b(kProgramId);
255
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
256
  bool has_feed_ops =
257
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
258
  bool has_fetch_ops =
259
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
260 261

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
262
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
263
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
264 265
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
266
  }
267 268
  auto* global_block = copy_program->MutableBlock(0);

269
  if (!has_feed_ops) {
270 271
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
272
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
273 274 275
    feed_holder->SetPersistable(true);

    int i = 0;
276
    for (auto& feed_target : (*feed_targets)) {
277
      std::string var_name = feed_target.first;
M
minqiyang 已提交
278
      VLOG(3) << "feed target's name: " << var_name;
279 280 281 282 283 284 285 286 287 288 289 290 291

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

292
  if (!has_fetch_ops) {
293 294
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
295
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
296 297 298
    fetch_holder->SetPersistable(true);

    int i = 0;
299
    for (auto& fetch_target : (*fetch_targets)) {
300
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
301
      VLOG(3) << "fetch target's name: " << var_name;
302 303 304 305 306 307 308 309 310 311 312 313 314

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

315
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
316 317 318
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
319 320
}

Q
Qiao Longfei 已提交
321
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
322
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
323
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
324 325
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
326 327 328 329 330
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
331 332 333 334 335 336
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
337
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
338
  return ctx;
Y
Yu Yang 已提交
339 340
}

T
refine  
typhoonzero 已提交
341
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
342
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
343 344
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
345 346 347 348
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
349
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
350
  size_t idx = 0;
T
typhoonzero 已提交
351 352
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
353
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
354 355 356 357
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
358 359 360 361 362
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
363
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
364
    ++idx;
T
typhoonzero 已提交
365 366 367 368
  }
  return result;
}

Y
Yu Yang 已提交
369
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
370 371
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
372
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
373 374 375 376
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
377 378
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
379
  }
Y
Yu Yang 已提交
380

S
sneaxiy 已提交
381
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
382
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
383 384 385
  // FIXME(zjl): recurrent_op is rather complex, we would
  // disable gc forcely in recurrent_op
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
386 387
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
388
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
389
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
390 391
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
392
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
393 394 395
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
396
#endif
S
sneaxiy 已提交
397 398
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
399 400 401
#ifdef PADDLE_WITH_CUDA
    }
#endif
S
sneaxiy 已提交
402 403
    // If gc is enabled and block size > 1
    if (gc && ctx->prog_.Size() > 1) {
S
sneaxiy 已提交
404 405 406
      operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
                                                                 ctx->ops_);
    }
S
sneaxiy 已提交
407 408
  }

Y
Yu Yang 已提交
409
  for (auto& op : ctx->ops_) {
410
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
411

S
fix bug  
sneaxiy 已提交
412
    if (gc) {
S
sneaxiy 已提交
413
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
414
    }
Y
Yu Yang 已提交
415
  }
S
sneaxiy 已提交
416

S
fix bug  
sneaxiy 已提交
417
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
418

Q
qiaolongfei 已提交
419
  if (local_scope != scope) {
Y
Yu Yang 已提交
420
    scope->DeleteScope(local_scope);
421
  } else {
Q
qiaolongfei 已提交
422 423 424 425 426
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
427 428
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
429 430
      scope->DropKids();
    }
Y
Yu Yang 已提交
431 432 433
  }
}

434 435
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
436
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
437 438 439
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
440 441
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

442
  PADDLE_ENFORCE(
443
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
444 445
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
446
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
447 448
      "Program in the prepared context should has fetch_ops.");

449 450 451 452 453
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
454 455
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
456 457 458
    }
  }

W
Wu Yi 已提交
459
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
460 461 462 463 464 465

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
466
      *(*fetch_targets)[fetch_target_name] =
467 468 469 470 471
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

472 473
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
474
  VLOG(3) << "use_mkldnn=True";
475 476 477 478 479 480 481 482
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
483 484 485
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
486 487
#endif
}
Q
qijun 已提交
488 489
}  // namespace framework
}  // namespace paddle