multi_devices_graph_builder.cc 17.6 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

C
chengduoZH 已提交
20
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
22
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
23
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
24
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
25
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Fix bug  
yuyang18 已提交
26
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
28 29 30 31

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
32 33 34 35

namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
36 37

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
38 39 40 41
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
42
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
43
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
44 45 46
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
47
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
48
      strategy_(strategy) {
Y
Yu Yang 已提交
49 50 51 52 53
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
54
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
55 56
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
57
      local_scopes_(local_scopes),
Y
yuyang18 已提交
58
      strategy_(strategy) {
Y
Yu Yang 已提交
59
#endif
Y
Yu Yang 已提交
60 61 62 63 64
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
65 66
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
67 68
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
69
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
70 71
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
72

Y
Yu Yang 已提交
73 74 75
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
76 77 78
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
79 80
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
81 82
  }
}
Y
fix pe  
Yancey1989 已提交
83 84 85 86

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
87 88
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
Y
fix pe  
Yancey1989 已提交
89
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
90 91 92
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
    if (op->Type() == "send_vars") {
Y
fix pe  
Yancey1989 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
106 107 108
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
122 123 124
    return false;
  }

Y
Yu Yang 已提交
125 126 127 128
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
129
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
130
    for (auto &var : opvars) {
Y
Yancey1989 已提交
131 132 133
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
134
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
135
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
136
        return true;
T
typhoonzero 已提交
137 138
      }
    }
Y
Yu Yang 已提交
139
    return false;
T
typhoonzero 已提交
140 141
  };

Y
Yancey1989 已提交
142 143
  return checker(op.OutputArgumentNames(), send_vars) ||
         checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
144 145
}

Y
Yu Yang 已提交
146 147
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
chengduoZH 已提交
148
  std::unordered_map<std::string, VarDesc *> all_vars;
C
fix ci  
chengduoZH 已提交
149
  for (auto *var : program.Block(0).AllVars()) {
C
chengduoZH 已提交
150
    all_vars[var->Name()] = var;
C
fix ci  
chengduoZH 已提交
151
  }
C
chengduoZH 已提交
152

Y
Yu Yang 已提交
153
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
154
  SSAGraph &result = *graph;
C
chengduoZH 已提交
155
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
156 157 158 159 160

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
161

Y
fix pe  
Yancey1989 已提交
162 163 164 165
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
166

C
chengduoZH 已提交
167 168 169 170 171
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  size_t cur_device_id = 0;
  std::vector<int64_t> balance_grads(places_.size(), 0);

  auto get_appropriate_dev = [&](std::string &g_name) -> size_t {
    auto var_desc = all_vars.at(g_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GE(numel, 0);
    auto smallest =
        std::min_element(std::begin(balance_grads), std::end(balance_grads));
    size_t dev_id =
        static_cast<size_t>(std::distance(std::begin(balance_grads), smallest));
    balance_grads[dev_id] += numel;
    return dev_id;
  };

Y
Yu Yang 已提交
189 190
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
191 192 193
    if (boost::get<int>(
            op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kRPC)) {
Y
Yancey1989 已提交
194
      // append rpc op if program is distributed trainer main program.
Y
Yu Yang 已提交
195
      // always use the first device
Y
Yancey1989 已提交
196
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
197
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
Y
Yancey1989 已提交
198
      CreateDistTrainOp(&result, *op);
Y
Yu Yang 已提交
199
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
200
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
201 202
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
203 204
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
205
      is_forwarding = false;
Y
Yu Yang 已提交
206
    } else {
C
chengduoZH 已提交
207 208 209 210 211 212 213 214 215
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
216
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
217
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
218
        // broadcast, and each gradient is only broadcast once.
Y
yuyang18 已提交
219 220 221
        if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                  OpProtoAndCheckerMaker::OpRoleAttrName())) &
                              static_cast<int>(OpRole::kBackward))) {
Y
yuyang18 已提交
222 223 224 225 226 227 228
          try {
            auto backward_vars =
                boost::get<std::vector<std::string>>(op->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

Y
Fix bug  
yuyang18 已提交
229
            for (size_t i = 0; i < backward_vars.size(); i += 2) {
Y
yuyang18 已提交
230 231
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
Y
yuyang18 已提交
232 233
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;

Y
yuyang18 已提交
234 235
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
C
chengduoZH 已提交
236
                  cur_device_id = get_appropriate_dev(g_name);
Y
yuyang18 已提交
237 238 239 240 241
                  CreateReduceOp(&result, g_name, cur_device_id);
                  var_name_on_devices[cur_device_id].emplace(g_name);
                  bcast_var_name_set[cur_device_id].emplace(p_name);
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
C
chengduoZH 已提交
242
                  if (IsSparseGradient(all_vars, g_name)) {
Y
yuyang18 已提交
243 244 245 246 247 248 249
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
                    InsertNCCLAllReduceOp(&result, g_name);
                  }
                  break;
              }
C
chengduoZH 已提交
250
            }
Y
yuyang18 已提交
251
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
252 253 254 255 256 257
          }
        }
      }
    }
  }

C
chengduoZH 已提交
258 259 260 261 262 263 264
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
265 266 267 268 269
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
270

Y
Yu Yang 已提交
271 272 273 274
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
275

Y
Yu Yang 已提交
276
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
277 278
}

C
fix ci  
chengduoZH 已提交
279
bool MultiDevSSAGraphBuilder::IsSparseGradient(
C
chengduoZH 已提交
280
    const std::unordered_map<std::string, VarDesc *> &all_vars,
C
fix ci  
chengduoZH 已提交
281
    const std::string &og) const {
C
chengduoZH 已提交
282 283
  PADDLE_ENFORCE(all_vars.count(og) != 0);
  if (all_vars.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
284 285 286
    return true;
  }
  return false;
287 288
}

C
chengduoZH 已提交
289 290
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
291
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
292 293 294 295 296 297 298
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
299
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
300 301 302
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
303
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
323 324 325 326 327 328 329 330 331 332
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
333 334
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
358 359 360
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
361
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
405 406 407
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
408 409 410
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
411
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
412 413 414
  }
}

C
chengduoZH 已提交
415 416 417
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
445 446
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
447
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
448
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
449 450 451
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
452
      op->AddInput(dep_var);
Y
Yancey1989 已提交
453 454 455 456
    }
  }
}

Y
Yancey1989 已提交
457 458 459 460 461 462 463 464
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
                                                const OpDesc &op) const {
  CreateComputationalOp(result, op, 0);
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

Y
Yancey1989 已提交
465 466
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result,
                                          const OpDesc &op) const {
Y
Yu Yang 已提交
467 468
  auto &p = places_[0];
  auto *s = local_scopes_[0];
Y
Yancey1989 已提交
469
  result->ops_.emplace_back(new RPCOpHandle(op, s, p, op.Type()));
Y
fix pe  
Yancey1989 已提交
470

Y
Yancey1989 已提交
471
  if (op.Type() == "send_barrier") {
Y
fix pe  
Yancey1989 已提交
472
    ConnectOp(result, result->ops_.back().get(), "send_vars");
Y
Yancey1989 已提交
473
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
474
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
475
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
476
    ConnectOp(result, result->ops_.back().get(), "recv");
Y
Yancey1989 已提交
477
  } else if (op.Type() == "send_vars") {
Y
Yancey1989 已提交
478 479 480
    // do nothing
  } else {
    PADDLE_THROW(
Y
Yancey1989 已提交
481
        "rpc op should be in ["
Y
Yancey1989 已提交
482 483 484
        "send_vars, send_barrier. recv, fetch_barrier]");
  }

Y
Yancey1989 已提交
485 486
  // TODO(Yancey1989): schedule rpc op on different place may
  // increate throughput
Y
Yu Yang 已提交
487
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
488 489 490
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
491 492
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
493 494 495
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
496
}
Y
Yu Yang 已提交
497 498 499
}  // namespace details
}  // namespace framework
}  // namespace paddle