multi_devices_graph_builder.cc 16.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
15 16
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
17
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
18
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
19
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
T
wip  
typhoonzero 已提交
21
#include "paddle/fluid/framework/details/send_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
23 24 25 26

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
27

Y
Yu Yang 已提交
28 29 30
#include <string>
#include <vector>

Y
Yu Yang 已提交
31 32 33
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
34 35

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
36 37 38 39
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
40
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
41
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
42 43 44
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
45
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
46
      strategy_(strategy) {
Y
Yu Yang 已提交
47 48 49 50 51
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
52
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
53 54
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
55
      local_scopes_(local_scopes),
Y
yuyang18 已提交
56
      strategy_(strategy) {
Y
Yu Yang 已提交
57
#endif
Y
Yu Yang 已提交
58 59 60 61 62
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
63 64
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
65 66
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
67
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
68 69
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
70

Y
Yu Yang 已提交
71 72 73
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
74 75 76
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
77 78
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
79 80
  }
}
Y
fix pe  
Yancey1989 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "send_vars" || op->Type() == "send") {
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "recv" || op->Type() == "send") {
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
114 115 116
    return false;
  }

Y
Yu Yang 已提交
117 118 119 120
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
121
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
122 123
    for (auto &var : opvars) {
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
124
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
125
        return true;
T
typhoonzero 已提交
126 127
      }
    }
Y
Yu Yang 已提交
128
    return false;
T
typhoonzero 已提交
129 130
  };

Y
fix pe  
Yancey1989 已提交
131 132 133
  if (op.Type() == "split" || op.Type() == "split_byref" ||
      op.Type() == "split_selected_rows") {
    return checker(op.OutputArgumentNames(), send_vars);
T
typhoonzero 已提交
134
  } else if (op.Type() == "concat") {
Y
fix pe  
Yancey1989 已提交
135
    return checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
136
  }
Y
fix pe  
Yancey1989 已提交
137

T
typhoonzero 已提交
138 139 140
  return false;
}

Y
Yancey1989 已提交
141 142 143 144 145 146 147 148 149
bool MultiDevSSAGraphBuilder::IsRPCOp(const OpDesc &op) const {
  for (auto &name : op.OutputNames()) {
    if (name == "RPCClient") {
      return true;
    }
  }
  return false;
}

Y
Yu Yang 已提交
150 151
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
fix ci  
chengduoZH 已提交
152 153 154 155
  std::unordered_map<std::string, proto::VarType::Type> var_types;
  for (auto *var : program.Block(0).AllVars()) {
    var_types[var->Name()] = var->GetType();
  }
C
chengduoZH 已提交
156

Y
Yu Yang 已提交
157
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
158
  SSAGraph &result = *graph;
C
chengduoZH 已提交
159
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
160 161 162 163 164

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
165

Y
fix pe  
Yancey1989 已提交
166 167 168 169
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
170

C
chengduoZH 已提交
171 172 173 174 175 176
  size_t cur_device_id = 0;
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

Y
Yu Yang 已提交
177 178
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
179 180
    if (IsRPCOp(*op)) {
      // append rpc op if program is distributed trainer main program.
Y
Yu Yang 已提交
181
      // always use the first device
Y
Yancey1989 已提交
182
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
183 184 185
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
      // CreateComputationalOps(&result, *op, 1);
      CreateComputationalOp(&result, *op, 0);
Y
Yu Yang 已提交
186
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
187
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
188 189
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
190 191
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
192
      is_forwarding = false;
Y
Yu Yang 已提交
193
    } else {
C
chengduoZH 已提交
194 195 196 197 198 199 200 201 202
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
203
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
204
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
205
        // broadcast, and each gradient is only broadcast once.
Y
Yu Yang 已提交
206 207
        for (auto &og : op->OutputArgumentNames()) {
          if (IsParameterGradientOnce(og, &og_has_been_broadcast)) {
Y
yuyang18 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
            switch (strategy_.reduce_) {
              case BuildStrategy::ReduceStrategy::kReduce:
                CreateReduceOp(&result, og, cur_device_id);
                var_name_on_devices[cur_device_id].emplace(og);
                bcast_var_name_set[cur_device_id].emplace(
                    og.substr(0, og.size() - strlen(kGradVarSuffix)));
                cur_device_id = (cur_device_id + 1) % places_.size();
                break;
              case BuildStrategy::ReduceStrategy::kAllReduce:
                if (IsSparseGradient(var_types, og)) {
                  CreateReduceOp(&result, og, 0);
                  CreateBroadcastOp(&result, og, 0);
                } else {
                  InsertNCCLAllReduceOp(&result, og);
                }
                break;
C
chengduoZH 已提交
224
            }
Y
Yu Yang 已提交
225 226 227 228 229 230
          }
        }
      }
    }
  }

C
chengduoZH 已提交
231 232 233 234 235 236 237
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
238 239 240 241 242
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
243

Y
Yu Yang 已提交
244 245 246 247 248
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
249
  if (VLOG_IS_ON(10)) {
Y
fix pe  
Yancey1989 已提交
250 251 252
    std::ostringstream sout;
    PrintGraphviz(*graph, sout);
    VLOG(10) << sout.str();
Y
Yu Yang 已提交
253 254
  }

Y
Yu Yang 已提交
255
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
256 257
}

C
fix ci  
chengduoZH 已提交
258 259 260 261 262 263 264 265
bool MultiDevSSAGraphBuilder::IsSparseGradient(
    const std::unordered_map<std::string, proto::VarType::Type> &var_types,
    const std::string &og) const {
  PADDLE_ENFORCE(var_types.count(og) != 0);
  if (var_types.at(og) == proto::VarType::SELECTED_ROWS) {
    return true;
  }
  return false;
266 267
}

C
chengduoZH 已提交
268 269
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
270
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
271 272 273 274 275 276 277
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
278
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
279 280 281
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
282
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
302 303 304 305 306 307 308 309 310
OpDesc *MultiDevSSAGraphBuilder::GetSendOpDesc(
    const ProgramDesc &program) const {
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "send") {
      return op;
    }
  }
  return nullptr;
}
Y
fix pe  
Yancey1989 已提交
311

Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320 321
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
322 323
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
347 348 349
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
350
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
394 395 396
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
397 398 399
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
400
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
401 402 403
  }
}

C
chengduoZH 已提交
404 405 406
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
434 435
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
436
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
437
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
438 439 440
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
441
      op->AddInput(dep_var);
Y
Yancey1989 已提交
442 443 444 445 446 447
    }
  }
}

void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result,
                                          const OpDesc &op) const {
Y
Yu Yang 已提交
448 449
  auto &p = places_[0];
  auto *s = local_scopes_[0];
Y
Yancey1989 已提交
450
  result->ops_.emplace_back(new RPCOpHandle(op, s, p, op.Type()));
Y
fix pe  
Yancey1989 已提交
451

Y
Yancey1989 已提交
452
  if (op.Type() == "send_barrier") {
Y
fix pe  
Yancey1989 已提交
453
    ConnectOp(result, result->ops_.back().get(), "send_vars");
Y
Yancey1989 已提交
454
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
455
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
456
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
457
    ConnectOp(result, result->ops_.back().get(), "recv");
Y
Yancey1989 已提交
458 459 460 461 462 463 464 465
  } else if (op.Type() == "send" || op.Type() == "send_vars") {
    // do nothing
  } else {
    PADDLE_THROW(
        "rpc op should be in [send,"
        "send_vars, send_barrier. recv, fetch_barrier]");
  }

Y
Yu Yang 已提交
466 467 468
  // FIXME(wuyi): send op always copy from GPU 0
  // Create inputs for output on original place and no ssa output
  // is created for send op.
Y
Yu Yang 已提交
469
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
470 471 472 473 474 475 476
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
  // FIXME(yy): Do not hard code like this
  return op.OutputArgumentNames().size() == 1 &&
         op.OutputArgumentNames()[0] == GradVarName(loss_var_name_);
}
C
chengduoZH 已提交
477

Y
Yu Yang 已提交
478 479 480
}  // namespace details
}  // namespace framework
}  // namespace paddle