multi_devices_graph_builder.cc 13.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
15 16
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
17
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
18
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yu Yang 已提交
19
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
T
wip  
typhoonzero 已提交
20
#include "paddle/fluid/framework/details/send_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
22 23 24 25

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
26

Y
Yu Yang 已提交
27 28 29
#include <string>
#include <vector>

Y
Yu Yang 已提交
30 31 32
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
33 34

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
35 36 37 38
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
39 40 41
    const std::vector<Scope *> &local_scopes,
    platform::NCCLContextMap *nccl_ctxs, bool use_default_grad_scale,
    bool use_nccl_allreduce)
Y
Yu Yang 已提交
42 43 44
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
45 46
      nccl_ctxs_(nccl_ctxs),
      use_nccl_allreduce_(use_nccl_allreduce) {
Y
Yu Yang 已提交
47
#else
C
chengduoZH 已提交
48

Y
Yu Yang 已提交
49 50 51 52
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
53 54
    const std::vector<Scope *> &local_scopes, bool use_default_grad_scale,
    bool use_nccl_allreduce)
Y
Yu Yang 已提交
55 56
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
57 58
      local_scopes_(local_scopes),
      use_nccl_allreduce_(use_nccl_allreduce) {
Y
Yu Yang 已提交
59
#endif
Y
Yu Yang 已提交
60 61 62
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
Y
Yu Yang 已提交
63
  use_default_grad_scale_ = use_default_grad_scale;
Y
Yu Yang 已提交
64 65
}

Y
Yu Yang 已提交
66 67
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
68 69
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
70
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
71 72
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
73

Y
Yu Yang 已提交
74 75 76
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
77 78 79
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
80 81
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
82 83 84
  }
}

T
typhoonzero 已提交
85 86 87 88 89 90
bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op,
                                            OpDesc *send_op) const {
  if (send_op == nullptr) {
    return false;
  }

Y
Yu Yang 已提交
91 92 93 94 95
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
                    const std::vector<std::string> &sendvars) -> bool {
T
typhoonzero 已提交
96 97 98
    for (auto &var : opvars) {
      if (var.find(".block") != std::string::npos &&
          std::find(sendvars.begin(), sendvars.end(), var) != sendvars.end()) {
Y
Yu Yang 已提交
99
        return true;
T
typhoonzero 已提交
100 101
      }
    }
Y
Yu Yang 已提交
102
    return false;
T
typhoonzero 已提交
103 104 105 106 107 108 109 110 111 112
  };

  if (op.Type() == "split") {
    return checker(op.OutputArgumentNames(), send_op->InputArgumentNames());
  } else if (op.Type() == "concat") {
    return checker(op.InputArgumentNames(), send_op->OutputArgumentNames());
  }
  return false;
}

Y
Yu Yang 已提交
113 114 115
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
116
  SSAGraph &result = *graph;
C
chengduoZH 已提交
117
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
118 119 120 121 122

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
123

C
chengduoZH 已提交
124 125 126 127 128 129 130 131
  size_t cur_device_id = 0;

  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;

  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

T
typhoonzero 已提交
132
  // Find "send" op first for split is in front of send.
Y
Yu Yang 已提交
133
  OpDesc *send_op = GetSendOpDesc(program);
T
typhoonzero 已提交
134

Y
Yu Yang 已提交
135 136
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yu Yang 已提交
137 138 139 140
    if (op->Type() == "send") {
      // append send op if program is distributed trainer main program.
      // always use the first device
      CreateSendOp(&result, *op);
T
typhoonzero 已提交
141 142
    } else if (IsDistTrainOp(*op, send_op)) {
      CreateComputationalOps(&result, *op, 1);
Y
Yu Yang 已提交
143
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
144 145
      // user can customize loss@grad if not use_default_grad_scale_
      if (use_default_grad_scale_) {
Y
Yu Yang 已提交
146 147
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
148
      is_forwarding = false;
Y
Yu Yang 已提交
149
    } else {
C
chengduoZH 已提交
150 151 152 153 154 155 156 157 158 159 160
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }

      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
161
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
162
        // broadcast, and each gradient is only broadcast once.
Y
Yu Yang 已提交
163 164
        for (auto &og : op->OutputArgumentNames()) {
          if (IsParameterGradientOnce(og, &og_has_been_broadcast)) {
C
chengduoZH 已提交
165 166 167 168 169 170 171 172 173
            if (use_nccl_allreduce_) {
              InsertNCCLAllReduceOp(&result, og);
            } else {
              CreateReduceOp(&result, cur_device_id, og);
              var_name_on_devices[cur_device_id].emplace(og);
              bcast_var_name_set[cur_device_id].emplace(
                  og.substr(0, og.size() - strlen(kGradVarSuffix)));
              cur_device_id = (cur_device_id + 1) % places_.size();
            }
Y
Yu Yang 已提交
174 175 176 177 178 179
          }
        }
      }
    }
  }

C
chengduoZH 已提交
180 181 182 183 184 185 186 187
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }

Y
Yu Yang 已提交
188 189 190 191 192
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
193

Y
Yu Yang 已提交
194 195 196 197 198
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
199 200 201 202 203 204
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    PrintGraphviz(*graph, sout);
    VLOG(10) << sout.str();
  }

Y
Yu Yang 已提交
205
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
206 207
}

C
chengduoZH 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
  if (use_nccl_allreduce_) {
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
                                                size_t dev_id) const {
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
  auto *in = result->vars_.at(dev_id).at(p_name).back().get();
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_.at(dev_id).at(p_name);
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
262 263 264 265 266 267 268 269 270
OpDesc *MultiDevSSAGraphBuilder::GetSendOpDesc(
    const ProgramDesc &program) const {
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "send") {
      return op;
    }
  }
  return nullptr;
}
Y
Yu Yang 已提交
271 272 273 274 275 276 277 278 279 280
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
281 282
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
333 334 335
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
336 337 338
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
339
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
340 341 342
  }
}

C
chengduoZH 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(
    SSAGraph *result, int dst_dev_id, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
Yu Yang 已提交
372 373 374 375 376 377 378 379
void MultiDevSSAGraphBuilder::CreateSendOp(SSAGraph *result,
                                           const OpDesc &op) const {
  auto &p = places_[0];
  auto *s = local_scopes_[0];
  // FIXME(wuyi): send op always copy from GPU 0
  result->ops_.emplace_back(new SendOpHandle(op, s, p));
  // Create inputs for output on original place and no ssa output
  // is created for send op.
Y
Yu Yang 已提交
380
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
381 382 383 384 385 386 387
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
  // FIXME(yy): Do not hard code like this
  return op.OutputArgumentNames().size() == 1 &&
         op.OutputArgumentNames()[0] == GradVarName(loss_var_name_);
}
C
chengduoZH 已提交
388

Y
Yu Yang 已提交
389 390 391
}  // namespace details
}  // namespace framework
}  // namespace paddle