multi_devices_graph_builder.cc 17.4 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16 17
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
18
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
19
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
20
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
T
wip  
typhoonzero 已提交
22
#include "paddle/fluid/framework/details/send_op_handle.h"
Y
Fix bug  
yuyang18 已提交
23
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
24
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
25 26 27 28

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
29

Y
Yu Yang 已提交
30 31 32
#include <string>
#include <vector>

Y
Yu Yang 已提交
33 34 35
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
36 37

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
38 39 40 41
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
42
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
43
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
44 45 46
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
47
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
48
      strategy_(strategy) {
Y
Yu Yang 已提交
49 50 51 52 53
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
54
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
55 56
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
57
      local_scopes_(local_scopes),
Y
yuyang18 已提交
58
      strategy_(strategy) {
Y
Yu Yang 已提交
59
#endif
Y
Yu Yang 已提交
60 61 62 63 64
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
65 66
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
67 68
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
69
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
70 71
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
72

Y
Yu Yang 已提交
73 74 75
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
76 77 78
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
79 80
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
81 82
  }
}
Y
fix pe  
Yancey1989 已提交
83 84 85 86

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
87 88
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
Y
fix pe  
Yancey1989 已提交
89
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
90 91 92
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
    if (op->Type() == "send_vars") {
Y
fix pe  
Yancey1989 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
106 107 108
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
122 123 124
    return false;
  }

Y
Yu Yang 已提交
125 126 127 128
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
129
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
130
    for (auto &var : opvars) {
Y
Yancey1989 已提交
131 132 133
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
134
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
135
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
136
        return true;
T
typhoonzero 已提交
137 138
      }
    }
Y
Yu Yang 已提交
139
    return false;
T
typhoonzero 已提交
140 141
  };

Y
Yancey1989 已提交
142 143
  return checker(op.OutputArgumentNames(), send_vars) ||
         checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
144 145 146
  return false;
}

Y
Yancey1989 已提交
147 148 149 150 151 152 153 154 155
bool MultiDevSSAGraphBuilder::IsRPCOp(const OpDesc &op) const {
  for (auto &name : op.OutputNames()) {
    if (name == "RPCClient") {
      return true;
    }
  }
  return false;
}

Y
Yu Yang 已提交
156 157
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
fix ci  
chengduoZH 已提交
158 159 160 161
  std::unordered_map<std::string, proto::VarType::Type> var_types;
  for (auto *var : program.Block(0).AllVars()) {
    var_types[var->Name()] = var->GetType();
  }
C
chengduoZH 已提交
162

Y
Yu Yang 已提交
163
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
164
  SSAGraph &result = *graph;
C
chengduoZH 已提交
165
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
166 167 168 169 170

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
171

Y
fix pe  
Yancey1989 已提交
172 173 174 175
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
176

C
chengduoZH 已提交
177 178 179 180 181 182
  size_t cur_device_id = 0;
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

Y
Yu Yang 已提交
183 184
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
185 186
    if (IsRPCOp(*op)) {
      // append rpc op if program is distributed trainer main program.
Y
Yu Yang 已提交
187
      // always use the first device
Y
Yancey1989 已提交
188
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
189
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
Y
Yancey1989 已提交
190
      CreateDistTrainOp(&result, *op);
Y
Yu Yang 已提交
191
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
192
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
193 194
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
195 196
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
197
      is_forwarding = false;
Y
Yu Yang 已提交
198
    } else {
C
chengduoZH 已提交
199 200 201 202 203 204 205 206 207
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
208
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
209
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
210
        // broadcast, and each gradient is only broadcast once.
Y
yuyang18 已提交
211 212 213
        if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                  OpProtoAndCheckerMaker::OpRoleAttrName())) &
                              static_cast<int>(OpRole::kBackward))) {
Y
yuyang18 已提交
214 215 216 217 218 219 220
          try {
            auto backward_vars =
                boost::get<std::vector<std::string>>(op->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

Y
Fix bug  
yuyang18 已提交
221
            for (size_t i = 0; i < backward_vars.size(); i += 2) {
Y
yuyang18 已提交
222 223
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
Y
yuyang18 已提交
224 225
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;

Y
yuyang18 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
                  CreateReduceOp(&result, g_name, cur_device_id);
                  var_name_on_devices[cur_device_id].emplace(g_name);
                  bcast_var_name_set[cur_device_id].emplace(p_name);
                  cur_device_id = (cur_device_id + 1) % places_.size();
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
                  if (IsSparseGradient(var_types, g_name)) {
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
                    InsertNCCLAllReduceOp(&result, g_name);
                  }
                  break;
              }
C
chengduoZH 已提交
242
            }
Y
yuyang18 已提交
243
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
244 245 246 247 248 249
          }
        }
      }
    }
  }

C
chengduoZH 已提交
250 251 252 253 254 255 256
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
257 258 259 260 261
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
262

Y
Yu Yang 已提交
263 264 265 266 267
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
268
  if (VLOG_IS_ON(10)) {
Y
Yancey1989 已提交
269 270
    std::ofstream fout("/tmp/graph.dot");
    PrintGraphviz(*graph, fout);
Y
Yu Yang 已提交
271 272
  }

Y
Yu Yang 已提交
273
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
274 275
}

C
fix ci  
chengduoZH 已提交
276 277 278 279 280 281 282 283
bool MultiDevSSAGraphBuilder::IsSparseGradient(
    const std::unordered_map<std::string, proto::VarType::Type> &var_types,
    const std::string &og) const {
  PADDLE_ENFORCE(var_types.count(og) != 0);
  if (var_types.at(og) == proto::VarType::SELECTED_ROWS) {
    return true;
  }
  return false;
284 285
}

C
chengduoZH 已提交
286 287
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
288
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
289 290 291 292 293 294 295
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
296
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
297 298 299
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
300
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
320 321 322 323 324 325 326 327 328 329
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
330 331
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
355 356 357
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
358
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
402 403 404
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
405 406 407
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
408
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
409 410 411
  }
}

C
chengduoZH 已提交
412 413 414
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
442 443
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
444
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
445
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
446 447 448
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
449
      op->AddInput(dep_var);
Y
Yancey1989 已提交
450 451 452 453
    }
  }
}

Y
Yancey1989 已提交
454 455 456 457 458 459 460 461
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
                                                const OpDesc &op) const {
  CreateComputationalOp(result, op, 0);
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

Y
Yancey1989 已提交
462 463
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result,
                                          const OpDesc &op) const {
Y
Yu Yang 已提交
464 465
  auto &p = places_[0];
  auto *s = local_scopes_[0];
Y
Yancey1989 已提交
466
  result->ops_.emplace_back(new RPCOpHandle(op, s, p, op.Type()));
Y
fix pe  
Yancey1989 已提交
467

Y
Yancey1989 已提交
468
  if (op.Type() == "send_barrier") {
Y
fix pe  
Yancey1989 已提交
469
    ConnectOp(result, result->ops_.back().get(), "send_vars");
Y
Yancey1989 已提交
470
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
471
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
472
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
473
    ConnectOp(result, result->ops_.back().get(), "recv");
Y
Yancey1989 已提交
474 475 476 477 478 479 480 481
  } else if (op.Type() == "send" || op.Type() == "send_vars") {
    // do nothing
  } else {
    PADDLE_THROW(
        "rpc op should be in [send,"
        "send_vars, send_barrier. recv, fetch_barrier]");
  }

Y
Yu Yang 已提交
482 483 484
  // FIXME(wuyi): send op always copy from GPU 0
  // Create inputs for output on original place and no ssa output
  // is created for send op.
Y
Yu Yang 已提交
485
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
486 487 488
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
489 490
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
491 492 493
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
494
}
Y
Yu Yang 已提交
495 496 497
}  // namespace details
}  // namespace framework
}  // namespace paddle