multi_devices_graph_builder.cc 17.4 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16 17
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
18
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
19
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
20
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Fix bug  
yuyang18 已提交
22
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
23
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
24 25 26 27

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
28

Y
Yu Yang 已提交
29 30 31
#include <string>
#include <vector>

Y
Yancey1989 已提交
32 33 34 35
DEFINE_string(ssa_graph_path, "/tmp/ssa_graph.dot",
              "the ssa graph path only print with GLOG_v=10,"
              "default /tmp/graph.dot");

Y
Yu Yang 已提交
36 37 38
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
39 40

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
41 42 43 44
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
45
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
46
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
47 48 49
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
50
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
51
      strategy_(strategy) {
Y
Yu Yang 已提交
52 53 54 55 56
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
57
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
58 59
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
60
      local_scopes_(local_scopes),
Y
yuyang18 已提交
61
      strategy_(strategy) {
Y
Yu Yang 已提交
62
#endif
Y
Yu Yang 已提交
63 64 65 66 67
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
68 69
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
70 71
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
72
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
73 74
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
75

Y
Yu Yang 已提交
76 77 78
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
79 80 81
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
82 83
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
84 85
  }
}
Y
fix pe  
Yancey1989 已提交
86 87 88 89

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
90 91
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
Y
fix pe  
Yancey1989 已提交
92
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
93 94 95
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
    if (op->Type() == "send_vars") {
Y
fix pe  
Yancey1989 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
109 110 111
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
125 126 127
    return false;
  }

Y
Yu Yang 已提交
128 129 130 131
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
132
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
133
    for (auto &var : opvars) {
Y
Yancey1989 已提交
134 135 136
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
137
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
138
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
139
        return true;
T
typhoonzero 已提交
140 141
      }
    }
Y
Yu Yang 已提交
142
    return false;
T
typhoonzero 已提交
143 144
  };

Y
Yancey1989 已提交
145 146
  return checker(op.OutputArgumentNames(), send_vars) ||
         checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
147 148
}

Y
Yancey1989 已提交
149 150 151 152 153 154 155 156 157
bool MultiDevSSAGraphBuilder::IsRPCOp(const OpDesc &op) const {
  for (auto &name : op.OutputNames()) {
    if (name == "RPCClient") {
      return true;
    }
  }
  return false;
}

Y
Yu Yang 已提交
158 159
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
fix ci  
chengduoZH 已提交
160 161 162 163
  std::unordered_map<std::string, proto::VarType::Type> var_types;
  for (auto *var : program.Block(0).AllVars()) {
    var_types[var->Name()] = var->GetType();
  }
C
chengduoZH 已提交
164

Y
Yu Yang 已提交
165
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
166
  SSAGraph &result = *graph;
C
chengduoZH 已提交
167
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
168 169 170 171 172

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
173

Y
fix pe  
Yancey1989 已提交
174 175 176 177
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
178

C
chengduoZH 已提交
179 180 181 182 183 184
  size_t cur_device_id = 0;
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

Y
Yu Yang 已提交
185 186
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
187 188
    if (IsRPCOp(*op)) {
      // append rpc op if program is distributed trainer main program.
Y
Yu Yang 已提交
189
      // always use the first device
Y
Yancey1989 已提交
190
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
191
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
Y
Yancey1989 已提交
192
      CreateDistTrainOp(&result, *op);
Y
Yu Yang 已提交
193
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
194
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
195 196
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
197 198
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
199
      is_forwarding = false;
Y
Yu Yang 已提交
200
    } else {
C
chengduoZH 已提交
201 202 203 204 205 206 207 208 209
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
210
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
211
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
212
        // broadcast, and each gradient is only broadcast once.
Y
yuyang18 已提交
213 214 215
        if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                  OpProtoAndCheckerMaker::OpRoleAttrName())) &
                              static_cast<int>(OpRole::kBackward))) {
Y
yuyang18 已提交
216 217 218 219 220 221 222
          try {
            auto backward_vars =
                boost::get<std::vector<std::string>>(op->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

Y
Fix bug  
yuyang18 已提交
223
            for (size_t i = 0; i < backward_vars.size(); i += 2) {
Y
yuyang18 已提交
224 225
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
Y
yuyang18 已提交
226 227
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;

Y
yuyang18 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
                  CreateReduceOp(&result, g_name, cur_device_id);
                  var_name_on_devices[cur_device_id].emplace(g_name);
                  bcast_var_name_set[cur_device_id].emplace(p_name);
                  cur_device_id = (cur_device_id + 1) % places_.size();
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
                  if (IsSparseGradient(var_types, g_name)) {
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
                    InsertNCCLAllReduceOp(&result, g_name);
                  }
                  break;
              }
C
chengduoZH 已提交
244
            }
Y
yuyang18 已提交
245
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
246 247 248 249 250 251
          }
        }
      }
    }
  }

C
chengduoZH 已提交
252 253 254 255 256 257 258
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
259 260 261 262 263
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
264

Y
Yu Yang 已提交
265 266 267 268 269
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
270
  if (VLOG_IS_ON(10)) {
Y
Yancey1989 已提交
271
    std::ofstream fout(FLAGS_ssa_graph_path);
Y
Yancey1989 已提交
272
    PrintGraphviz(*graph, fout);
Y
Yu Yang 已提交
273 274
  }

Y
Yu Yang 已提交
275
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
276 277
}

C
fix ci  
chengduoZH 已提交
278 279 280 281 282 283 284 285
bool MultiDevSSAGraphBuilder::IsSparseGradient(
    const std::unordered_map<std::string, proto::VarType::Type> &var_types,
    const std::string &og) const {
  PADDLE_ENFORCE(var_types.count(og) != 0);
  if (var_types.at(og) == proto::VarType::SELECTED_ROWS) {
    return true;
  }
  return false;
286 287
}

C
chengduoZH 已提交
288 289
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
290
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
291 292 293 294 295 296 297
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
298
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
299 300 301
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
302
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
322 323 324 325 326 327 328 329 330 331
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
332 333
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
357 358 359
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
360
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
404 405 406
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
407 408 409
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
410
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
411 412 413
  }
}

C
chengduoZH 已提交
414 415 416
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
444 445
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
446
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
447
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
448 449 450
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
451
      op->AddInput(dep_var);
Y
Yancey1989 已提交
452 453 454 455
    }
  }
}

Y
Yancey1989 已提交
456 457 458 459 460 461 462 463
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
                                                const OpDesc &op) const {
  CreateComputationalOp(result, op, 0);
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

Y
Yancey1989 已提交
464 465
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result,
                                          const OpDesc &op) const {
Y
Yu Yang 已提交
466 467
  auto &p = places_[0];
  auto *s = local_scopes_[0];
Y
Yancey1989 已提交
468
  result->ops_.emplace_back(new RPCOpHandle(op, s, p, op.Type()));
Y
fix pe  
Yancey1989 已提交
469

Y
Yancey1989 已提交
470
  if (op.Type() == "send_barrier") {
Y
fix pe  
Yancey1989 已提交
471
    ConnectOp(result, result->ops_.back().get(), "send_vars");
Y
Yancey1989 已提交
472
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
473
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
474
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
475
    ConnectOp(result, result->ops_.back().get(), "recv");
Y
Yancey1989 已提交
476
  } else if (op.Type() == "send_vars") {
Y
Yancey1989 已提交
477 478 479
    // do nothing
  } else {
    PADDLE_THROW(
Y
Yancey1989 已提交
480
        "rpc op should be in ["
Y
Yancey1989 已提交
481 482 483
        "send_vars, send_barrier. recv, fetch_barrier]");
  }

Y
Yancey1989 已提交
484 485
  // TODO(Yancey1989): schedule rpc op on different place may
  // increate throughput
Y
Yu Yang 已提交
486
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
487 488 489
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
490 491
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
492 493 494
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
495
}
Y
Yu Yang 已提交
496 497 498
}  // namespace details
}  // namespace framework
}  // namespace paddle