device_context.h 26.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#include "paddle/fluid/platform/dynload/cusparse.h"
28
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
29
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
32
#endif
D
dzhwinter 已提交
33

34 35 36 37 38 39 40 41 42 43
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

44 45 46 47
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
48
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
49
#include "mkldnn.hpp"
50
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
51 52
#endif

53
#include <map>
W
wanghuancoder 已提交
54

55
#include "glog/logging.h"
Y
Yi Wang 已提交
56 57
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
58
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
59
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
60
#endif
61 62 63
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
64
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
65

W
wanghuancoder 已提交
66 67 68 69 70
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

71
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
72 73
#include "paddle/fluid/platform/xpu/xpu_header.h"
#include "paddle/fluid/platform/xpu/xpu_info.h"
74 75
#endif

76 77 78 79 80
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
81 82 83
namespace paddle {
namespace platform {

84
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
85 86 87 88
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
89
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
90 91 92 93
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
94 95
#endif  // PADDLE_WITH_CUDA

96 97 98 99
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
100
  NPU = 3,
101 102

  MAX_DEVICE_TYPES = 4,
103 104
};

105 106
DeviceType Place2DeviceType(const platform::Place& place);

107 108 109
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
110
constexpr DeviceType kNPU = DeviceType::NPU;
111

Q
QI JUN 已提交
112 113
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
114
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
115
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
116

117
  virtual void Wait() const {}
Q
QI JUN 已提交
118 119
};

Q
qijun 已提交
120 121
class CPUDeviceContext : public DeviceContext {
 public:
122
  CPUDeviceContext();
Q
qijun 已提交
123
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
124

125
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
126

L
liaogang 已提交
127
  Place GetPlace() const override;
Y
Yu Yang 已提交
128

Q
qijun 已提交
129
 private:
D
dzhwinter 已提交
130
  CPUPlace place_;
Q
qijun 已提交
131
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
132 133
};

Y
Yang Yu 已提交
134 135 136 137 138 139 140 141
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

142
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
143
namespace xpu = baidu::xpu::api;
144 145 146 147 148 149
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
150
  XPUVersion xpu_version() const { return xpu_version_; }
151 152 153 154 155 156
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

157
#ifdef PADDLE_WITH_XPU_BKCL
158
  /*! \brief  Return bkcl context. */
159 160 161 162 163 164
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

165 166
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
167
  XPUVersion xpu_version_;
168
  xpu::Context* context_;
169 170 171
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
172 173 174 175 176 177 178 179 180 181 182 183 184

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

185 186 187 188 189 190 191 192
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
193

194 195 196 197 198 199
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

200 201 202 203 204 205 206
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

222 223 224
 private:
  NPUPlace place_;
  aclrtContext context_;
225 226 227 228

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

265 266 267
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
268
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
269
class EigenCudaStreamDevice;
S
sneaxiy 已提交
270

271 272 273 274 275
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
276 277
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

293 294 295 296 297 298
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

299
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
300

301 302 303
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
304
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
305
#endif
306

307
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
308 309 310
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
311
#endif
G
Guo Sheng 已提交
312

313 314 315 316 317 318 319 320 321 322 323
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
324 325 326 327 328
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

348 349 350 351 352
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
353 354 355 356 357 358 359
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
360 361 362 363 364
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
365 366
    }
  }
367
#endif
368 369 370

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
371 372 373 374 375
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
376 377
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
378 379 380 381
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
382 383
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
384
            << ", but MIOPEN version in your machine is "
385
            << local_miopen_version / 100 << "." << local_miopen_version % 100
386 387 388 389 390 391 392 393
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
394 395 396 397 398 399 400 401 402 403 404 405 406
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
407 408
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
409
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
410
#endif
411 412 413 414 415
    } else {
      cudnn_handle_ = nullptr;
    }
  }

416
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
417
  void InitCuSolverContext() {
418 419
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
420 421
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
422
#endif
G
Guo Sheng 已提交
423

424 425
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
426 427 428
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
429
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
430
#endif
431 432 433 434 435 436 437
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
438
    cublas_tf32_tensor_core_handle_.reset();
439 440
  }

441
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
442 443 444 445 446 447
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
448
#endif
G
Guo Sheng 已提交
449

450 451 452 453
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
454 455 456
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
457
  cudnnHandle_t cudnn_handle_;
458
#endif
459 460
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
461
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
462
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
463
  cusolverDnHandle_t cusolver_dn_handle_;
464
#endif
465 466 467
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

468
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
469
 public:
D
dzhwinter 已提交
470
  explicit CUDADeviceContext(CUDAPlace place);
471
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
472

473
  /*! \brief  Wait for all operations completion in the stream. */
474
  void Wait() const override;
Q
QI JUN 已提交
475

476
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
477
  Place GetPlace() const override;
478

K
Kexin Zhao 已提交
479
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
480 481
  int GetComputeCapability() const;

482 483 484
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

485 486 487 488 489 490
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

491 492 493
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

494 495 496
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

497 498 499
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
500
    return context()->CublasCall(callback);
501 502 503 504 505 506 507 508 509
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
510
    return context()->TensorCoreCublasCallIfAvailable(callback);
511
  }
S
sneaxiy 已提交
512

513 514 515 516
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
517
  cudnnHandle_t cudnn_handle() const;
518
#endif
519

520 521 522 523
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
524
  cublasHandle_t cublas_handle() const;
525
#endif
526

S
sneaxiy 已提交
527 528 529 530 531 532 533 534 535
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

536
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
537
  cusolverDnHandle_t cusolver_dn_handle() const;
538
#endif
G
Guo Sheng 已提交
539

Q
init  
qijun 已提交
540
  /*! \brief  Return cuda stream in the device context. */
541
  gpuStream_t stream() const;
Q
QI JUN 已提交
542

543
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
544 545 546 547 548
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
549
#endif
Q
qingqing01 已提交
550

Y
Yu Yang 已提交
551
  template <typename Callback>
552
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
553
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
554 555
  }

S
sneaxiy 已提交
556 557
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
558 559 560 561 562
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
563 564
  }

565
  void ResetDefaultContext(const stream::Priority& priority) {
566 567 568
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

569
  void ResetThreadContext(const stream::Priority& priority) {
570 571 572 573 574 575 576 577 578 579
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
580

Q
QI JUN 已提交
581
 private:
D
dzhwinter 已提交
582
  CUDAPlace place_;
583
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
584

585 586 587 588 589 590
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
591

592 593
  mutable std::mutex cudnn_handle_mtx_;

594
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
595 596 597 598 599 600
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
601
#endif
Q
qingqing01 已提交
602

C
chengduo 已提交
603 604 605 606 607
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
608
  int max_threads_per_block_;
609
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
610

611
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
612
};
Q
qijun 已提交
613

614 615
class CudnnWorkspaceHandle {
 public:
616 617
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
618 619 620 621 622 623 624 625

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
626 627 628 629
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
630 631 632 633 634 635 636 637 638 639 640 641 642
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

643
  void ReallocWorkspace(size_t required_workspace_bytes);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
660
  std::mutex* mtx_;
661 662
};

Y
Yang Yu 已提交
663 664
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
665
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
666 667
};

C
chengduoZH 已提交
668
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
669 670 671 672 673 674
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
675

C
chengduoZH 已提交
676 677 678 679 680 681 682 683 684 685 686
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
687
#endif
Q
qijun 已提交
688

T
tensor-tang 已提交
689
#ifdef PADDLE_WITH_MKLDNN
690 691 692 693 694 695

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
696
    bool said_once = false;
697 698 699 700 701 702 703 704 705 706 707
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
708 709 710
    // MKL-DNN stream used for execution of primitives (per-thread)
    mkldnn::engine cur_engine;
    mkldnn::stream cur_stream;
J
Jacek Czaja 已提交
711 712
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
713
    void* exec_ptr_ = nullptr;
714 715

    Body();
716
    ~Body();
717 718 719 720 721 722
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
723
    void log_lib_version(void);
724 725
    const mkldnn::engine& get_engine(void);
    mkldnn::stream& get_stream(void);
J
Jacek Czaja 已提交
726 727 728 729
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
730 731
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
747

T
tensor-tang 已提交
748 749
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
750 751 752 753 754 755 756 757 758 759
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
760
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
761 762 763
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
764
  using ShapeBlob = umap_key_string_t<KeyBlob>;
765 766
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

767 768 769 770
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
771
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
772 773 774
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
775

T
tensor-tang 已提交
776 777 778
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
779
  const mkldnn::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
780

781
  // Register object to currently used executor's map
782 783
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
784

785
  // Remove all entries from the blob map
786
  void ResetBlobMap(void* ptr);
787 788 789

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
790

791 792 793
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

794 795
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
796

797
  // Calculate number of oneDNN objects cached
798
  unsigned int GetCachedObjectsNumber(void) const;
799

800 801
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
802

803 804 805 806
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
807
 private:
808
  std::shared_ptr<BlobMap> p_blobmap_;
809 810
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
811
  std::shared_ptr<ExecShape> p_exec_items_;
812
  std::shared_ptr<std::mutex> p_mutex_;
813
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
814 815 816
};
#endif

D
dzhwinter 已提交
817 818 819 820 821
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
822
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
823 824 825
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
826 827 828 829
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
830
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
831 832 833 834 835 836
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

837 838
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
839
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
840
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
841

Y
Yang Yu 已提交
842 843 844 845 846 847 848
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

849 850
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
851 852
 private:
  static DeviceContextPool* pool;
853 854
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
855 856 857
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
858 859
}  // namespace platform
}  // namespace paddle