conditional_block_op.cc 15.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/fluid/operators/controlflow/conditional_block_op.h"
16

17
#include "paddle/fluid/operators/assign_op.h"
18
#include "paddle/phi/kernels/funcs/math_function.h"
Y
Yu Yang 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Y
Yu Yang 已提交
24 25 26
namespace paddle {
namespace operators {

Z
Zeng Jinle 已提交
27 28 29 30 31 32
const char ConditionalOp::kInputs[] = "Input";
const char ConditionalOp::kOutputs[] = "Out";
const char ConditionalOp::kCondition[] = "Cond";
const char ConditionalOp::kScope[] = "Scope";
const char ConditionalOp::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";

Y
Yu Yang 已提交
33 34 35 36 37 38 39
class ConditionalBlockOp : public ConditionalOp {
 public:
  ConditionalBlockOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
40 41 42 43

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
44 45
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
46 47 48
      // When is_scalar_condition is True, the conditional variable is a scalar,
      // whether need to execute the operators in sub-block depends on the
      // conditional variable (Cond).
Z
Zeng Jinle 已提交
49
      auto xs = InputTensors(scope, ConditionalOp::kCondition);
50 51
      need_run = ScalarCondition(xs);
    } else {
52 53 54
      // When is_scalar_condition is False, the conditional variable maybe a
      // vector or tensor, whether need to execute the operators in sub-block
      // depends on the input variables (Input).
Z
Zeng Jinle 已提交
55
      auto xs = InputTensors(scope, ConditionalOp::kInputs);
56 57 58 59
      need_run =
          std::all_of(xs.begin(), xs.end(), [](const framework::LoDTensor *t) {
            return t->numel() != 0;
          });
60
    }
Y
Yu Yang 已提交
61 62

    if (need_run) {
Z
Zeng Jinle 已提交
63
      auto *scope_var = scope.FindVar(Output(ConditionalOp::kScope));
64
      PADDLE_ENFORCE_NOT_NULL(
65 66 67 68
          scope_var,
          platform::errors::PreconditionNotMet(
              "Expect Scope variable to be set in conditional_block_op, but "
              "got a null Scope variable. Please set the Scope variable."));
Y
Yu Yang 已提交
69 70 71 72
      auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
      scopes->resize(1);
      scopes->front() = &scope.NewScope();
      auto &cur_scope = *scopes->front();
73 74 75 76 77 78
#ifdef PADDLE_WITH_MKLDNN
      // (jczaja) Executor on being destroyed clears oneDNN cache and
      // reset registered model data layout. This is unwanted for nested
      // Executors (executors declared inside control ops)
      platform::DontClearMKLDNNCache(dev_place);
#endif
D
dzhwinter 已提交
79
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
80
      auto *block = Attr<framework::BlockDesc *>("sub_block");
81 82
      VLOG(3) << "Conditional block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
Z
Zeng Jinle 已提交
83 84
      auto &skip_vars =
          Attr<std::vector<std::string>>(ConditionalOp::kSkipEagerDeletionVars);
85 86 87 88 89 90 91
      exec.Run(*block->Program(),
               &cur_scope,
               block->ID(),
               false,
               true,
               skip_vars,
               /* force_disable_gc */ false,
92
               /* keep_kid_scopes */ true);
Y
Yu Yang 已提交
93 94 95 96
    }
  }
};

97 98 99
class ConditionalBlockInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
100 101
    PADDLE_ENFORCE_EQ(context->HasInputs(ConditionalOp::kCondition),
                      true,
102
                      platform::errors::InvalidArgument(
103
                          "conditional_block_op must have condition input."));
104 105 106
  }
};

Y
Yu Yang 已提交
107 108 109 110 111 112 113
class ConditionalBlockGradOp : public ConditionalOp {
 public:
  ConditionalBlockGradOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
114 115 116 117

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
118 119
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
Z
Zeng Jinle 已提交
120
      auto xs = this->InputTensors(scope, ConditionalOp::kCondition);
121 122
      need_run = ScalarCondition(xs);
    } else {
Z
Zeng Jinle 已提交
123
      auto xs = this->InputTensors(scope, ConditionalOp::kInputs);
124 125 126 127
      need_run =
          std::all_of(xs.begin(), xs.end(), [](const framework::LoDTensor *t) {
            return t->numel() != 0;
          });
128
    }
Y
Yu Yang 已提交
129

130 131 132
    const auto &inputs = Inputs(ConditionalOp::kInputs);
    const auto &outside_grads =
        Outputs(framework::GradVarName(ConditionalOp::kInputs));
Y
Yu Yang 已提交
133
    if (need_run) {
134 135 136 137 138 139
      std::vector<std::string> inside_grads;
      inside_grads.reserve(inputs.size());
      for (auto &in : inputs) {
        inside_grads.emplace_back(framework::GradVarName(in));
      }

Z
Zeng Jinle 已提交
140
      auto *scope_var = scope.FindVar(Input(ConditionalOp::kScope));
141
      PADDLE_ENFORCE_NOT_NULL(
142 143 144 145
          scope_var,
          platform::errors::PreconditionNotMet(
              "Expect Scope variable to be set in conditional_block_op, but "
              "got a null Scope variable. Please set the Scope variable."));
Y
Yu Yang 已提交
146
      auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
147
      PADDLE_ENFORCE_GT(
148 149
          scopes.size(),
          0,
150 151 152
          platform::errors::InvalidArgument(
              "Expect Scope variable contains at least 1 scope, but got: %d",
              scopes.size()));
Y
Yu Yang 已提交
153 154
      framework::Scope &cur_scope = *scopes[0];

D
dzhwinter 已提交
155
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
156
      auto *block = Attr<framework::BlockDesc *>("sub_block");
Y
Yu Yang 已提交
157

158 159
      VLOG(3) << "Conditional Grad block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
160 161 162 163 164 165 166
      exec.Run(*block->Program(),
               &cur_scope,
               block->ID(),
               false,
               true,
               inside_grads,
               /* force_disable_gc */ false,
167
               /* keep_kid_scopes */ false);
Y
Yu Yang 已提交
168

169 170
      AssignLocalGradientToParentScope(
          dev_place, cur_scope, scope, inside_grads, outside_grads, inputs);
171
      return;
Y
Yu Yang 已提交
172
    }
173 174

    AssignZeroToParentScope(dev_place, scope, inputs, outside_grads);
Y
Yu Yang 已提交
175 176 177
  }

 private:
178
  void AssignLocalGradientToParentScope(
179 180
      const platform::Place &place,
      const framework::Scope &cur_scope,
181 182
      const framework::Scope &parent_scope,
      const std::vector<std::string> &inside_grads,
183 184 185 186
      const std::vector<std::string> &outside_grads,
      const std::vector<std::string> &inputs) const {
    std::vector<std::string> assign_zero_outside_grads;
    std::vector<std::string> assign_zero_inputs;
187 188 189 190 191 192 193 194 195 196
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &inside_grad_name = inside_grads[i];
      VLOG(4) << "inside_grad_name = " << inside_grad_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *outside_var =
          parent_scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }
197 198 199 200 201 202 203
      framework::Variable *inside_var =
          cur_scope.FindLocalVar(inside_grad_name);
      if (inside_var == nullptr) {
        assign_zero_outside_grads.emplace_back(outside_grad_name);
        assign_zero_inputs.emplace_back(inputs[i]);
        continue;
      }
204 205 206 207
      platform::DeviceContext *dev_ctx =
          platform::DeviceContextPool::Instance().Get(place);
      framework::VisitVarType(*inside_var,
                              AssignFunctor(outside_var, *dev_ctx));
Y
Yu Yang 已提交
208
    }
209 210
    // Assign zero to the grad_vars that are in outside_grads but not in
    // inside_grads
211 212
    AssignZeroToParentScope(
        place, parent_scope, assign_zero_inputs, assign_zero_outside_grads);
Y
Yu Yang 已提交
213
  }
214 215

  void AssignZeroToParentScope(
216 217
      const platform::Place &place,
      const framework::Scope &scope,
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
      const std::vector<std::string> &inputs,
      const std::vector<std::string> &outside_grads) const {
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &input_name = inputs[i];
      VLOG(4) << "input_name = " << input_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *input_var = scope.FindVar(input_name);
      if (input_var == nullptr) {
        continue;
      }
      framework::Variable *outside_var = scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }

      if (input_var->IsType<framework::LoDTensor>()) {
235 236
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensor>(),
                          true,
237 238
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensor, which "
239
                              "doesn't match input_var %s.",
240 241
                              outside_grad_name,
                              input_name));
242
        AssignZeroToOutsideTensor(
243 244 245
            place,
            scope,
            input_var->Get<framework::LoDTensor>(),
246 247 248 249 250 251
            outside_var->GetMutable<framework::LoDTensor>());
      } else if (input_var->IsType<framework::LoDTensorArray>()) {
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensorArray>(),
                          true,
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensorArray, "
252
                              "which doesn't match input_var %s.",
253 254
                              outside_grad_name,
                              input_name));
255 256 257
        const auto &input_tensors = input_var->Get<framework::LoDTensorArray>();
        auto *outside_tensors =
            outside_var->GetMutable<framework::LoDTensorArray>();
258 259 260
        if (outside_tensors->size() == 0U) {
          outside_tensors->resize(input_tensors.size());
        }
261 262
        PADDLE_ENFORCE_EQ(input_tensors.size(),
                          outside_tensors->size(),
263 264
                          platform::errors::InvalidArgument(
                              "LoDTensorArray outside_var %s doen't have same "
265
                              "size as input_var %s.",
266 267
                              outside_grad_name,
                              input_name));
268
        for (size_t j = 0; j < input_tensors.size(); ++j) {
269 270
          AssignZeroToOutsideTensor(
              place, scope, input_tensors[j], &((*outside_tensors)[j]));
271 272 273 274 275
        }
      } else {
        // TODO(huihuangzheng): add support for SelectedRows
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Conditional block grad op doesn't support non-LoDTensor output "
276
            "now."));
277 278 279 280 281 282 283 284 285 286 287 288 289
      }
    }
  }

  void AssignZeroToOutsideTensor(const platform::Place &place,
                                 const framework::Scope &cur_scope,
                                 const framework::LoDTensor &input_tensor,
                                 framework::LoDTensor *outside_tensor) const {
    if (!input_tensor.IsInitialized() || input_tensor.numel() == 0) {
      return;
    }
    VLOG(4) << "Assigning zero to " << outside_tensor;
    outside_tensor->Resize(input_tensor.dims());
290
    outside_tensor->mutable_data(place, input_tensor.dtype());
291 292
    const platform::DeviceContext *dev_ctx =
        platform::DeviceContextPool::Instance().Get(place);
293
    phi::funcs::set_constant(*dev_ctx, outside_tensor, 0.0f);
294 295
    outside_tensor->set_lod(input_tensor.lod());
  }
Y
Yu Yang 已提交
296 297 298 299 300
};

class ConditionalBlockGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
301
    PADDLE_ENFORCE_EQ(
302 303
        context->HasInputs(ConditionalOp::kCondition),
        true,
304 305
        platform::errors::InvalidArgument(
            "Condition must be set in conditional_block_grad_op."));
306 307
    if (context->HasInputs(ConditionalOp::kInputs) &&
        context->HasOutputs(framework::GradVarName(ConditionalOp::kInputs))) {
Z
Zeng Jinle 已提交
308 309
      context->SetOutputsDim(framework::GradVarName(ConditionalOp::kInputs),
                             context->GetInputsDim(ConditionalOp::kInputs));
Y
Yu Yang 已提交
310 311 312 313
    }
  }
};

314 315 316 317 318 319 320
class ConditionalBlockGradInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    // NOTE(Aurelius84): VarType of Output is LoDTensor by default. In case of
    // Input is {Tensor, LoDTensorArray}, we need synchronous the Input's
    // VarType into Input@GRAD to avoid generating {Tensor, Tensor} as
    // Input@GRAD.
321 322 323
    auto input_size = ctx->InputSize(ConditionalOp::kInputs);
    auto output_size =
        ctx->OutputSize(framework::GradVarName(ConditionalOp::kInputs));
324 325
    PADDLE_ENFORCE_EQ(input_size,
                      output_size,
326 327 328 329 330 331 332 333
                      platform::errors::InvalidArgument(
                          "input_size and output_size should be equal for "
                          "conditional_block_grad_op."));
    for (size_t i = 0; i < output_size; ++i) {
      ctx->SyncTypeAndDataType(ConditionalOp::kInputs,
                               framework::GradVarName(ConditionalOp::kInputs),
                               i);
    }
334 335 336
  }
};

H
hong 已提交
337 338
template <typename T>
class ConditionalBlockGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
339
 public:
H
hong 已提交
340
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
341 342

 protected:
343
  void Apply(GradOpPtr<T> grad_op) const override {
Y
Yu Yang 已提交
344
    grad_op->SetType("conditional_block_grad");
Z
Zeng Jinle 已提交
345
    grad_op->SetInput(ConditionalOp::kCondition,
H
hong 已提交
346 347 348 349 350
                      this->Input(ConditionalOp::kCondition));
    grad_op->SetInput(ConditionalOp::kInputs,
                      this->Input(ConditionalOp::kInputs));
    grad_op->SetInput(ConditionalOp::kOutputs,
                      this->Output(ConditionalOp::kOutputs));
Z
Zeng Jinle 已提交
351
    grad_op->SetInput(framework::GradVarName(ConditionalOp::kOutputs),
H
hong 已提交
352 353 354
                      this->OutputGrad(ConditionalOp::kOutputs));
    grad_op->SetInput(ConditionalOp::kScope,
                      this->Output(ConditionalOp::kScope));
Z
Zeng Jinle 已提交
355
    grad_op->SetOutput(framework::GradVarName(ConditionalOp::kInputs),
H
hong 已提交
356
                       this->InputGrad(ConditionalOp::kInputs, false));
A
Abhinav Arora 已提交
357
    grad_op->SetBlockAttr("sub_block", this->grad_block_[0]);
H
hong 已提交
358 359
    grad_op->SetAttr("is_scalar_condition",
                     this->GetAttr("is_scalar_condition"));
Y
Yu Yang 已提交
360 361 362 363 364 365 366
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
367 368
REGISTER_OPERATOR(conditional_block,
                  ops::ConditionalBlockOp,
369
                  ops::ConditionalBlockInferShape,
Y
Yu Yang 已提交
370
                  ops::ConditionalBlockOpProtoMaker,
H
hong 已提交
371
                  ops::ConditionalBlockGradMaker<paddle::framework::OpDesc>);
372 373
REGISTER_OPERATOR(conditional_block_grad,
                  ops::ConditionalBlockGradOp,
374 375
                  ops::ConditionalBlockGradInferShape,
                  ops::ConditionalBlockGradInferVarType);