conditional_block_op.cc 12.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/fluid/operators/controlflow/conditional_block_op.h"
16

17
#include "paddle/fluid/operators/assign_op.h"
18
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
19 20 21 22

namespace paddle {
namespace operators {

Z
Zeng Jinle 已提交
23 24 25 26 27 28
const char ConditionalOp::kInputs[] = "Input";
const char ConditionalOp::kOutputs[] = "Out";
const char ConditionalOp::kCondition[] = "Cond";
const char ConditionalOp::kScope[] = "Scope";
const char ConditionalOp::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";

Y
Yu Yang 已提交
29 30 31 32 33 34 35
class ConditionalBlockOp : public ConditionalOp {
 public:
  ConditionalBlockOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
36 37 38 39

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
40 41
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
42 43 44
      // When is_scalar_condition is True, the conditional variable is a scalar,
      // whether need to execute the operators in sub-block depends on the
      // conditional variable (Cond).
Z
Zeng Jinle 已提交
45
      auto xs = InputTensors(scope, ConditionalOp::kCondition);
46 47
      need_run = ScalarCondition(xs);
    } else {
48 49 50
      // When is_scalar_condition is False, the conditional variable maybe a
      // vector or tensor, whether need to execute the operators in sub-block
      // depends on the input variables (Input).
Z
Zeng Jinle 已提交
51
      auto xs = InputTensors(scope, ConditionalOp::kInputs);
52 53 54 55
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
56 57

    if (need_run) {
Z
Zeng Jinle 已提交
58
      auto *scope_var = scope.FindVar(Output(ConditionalOp::kScope));
Y
Yu Yang 已提交
59 60 61 62 63
      PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
      auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
      scopes->resize(1);
      scopes->front() = &scope.NewScope();
      auto &cur_scope = *scopes->front();
D
dzhwinter 已提交
64
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
65
      auto *block = Attr<framework::BlockDesc *>("sub_block");
66 67
      VLOG(3) << "Conditional block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
Z
Zeng Jinle 已提交
68 69 70
      auto &skip_vars =
          Attr<std::vector<std::string>>(ConditionalOp::kSkipEagerDeletionVars);
      exec.Run(*block->Program(), &cur_scope, block->ID(), false, true,
71 72
               skip_vars, /* force_disable_gc */ false,
               /* keep_kid_scopes */ true);
Y
Yu Yang 已提交
73 74 75 76 77 78 79 80 81 82 83
    }
  }
};

class ConditionalBlockGradOp : public ConditionalOp {
 public:
  ConditionalBlockGradOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
84 85 86 87

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
88 89
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
Z
Zeng Jinle 已提交
90
      auto xs = this->InputTensors(scope, ConditionalOp::kCondition);
91 92
      need_run = ScalarCondition(xs);
    } else {
Z
Zeng Jinle 已提交
93
      auto xs = this->InputTensors(scope, ConditionalOp::kInputs);
94 95 96 97
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
98

99 100 101
    const auto &inputs = Inputs(ConditionalOp::kInputs);
    const auto &outside_grads =
        Outputs(framework::GradVarName(ConditionalOp::kInputs));
Y
Yu Yang 已提交
102
    if (need_run) {
103 104 105 106 107 108
      std::vector<std::string> inside_grads;
      inside_grads.reserve(inputs.size());
      for (auto &in : inputs) {
        inside_grads.emplace_back(framework::GradVarName(in));
      }

Z
Zeng Jinle 已提交
109
      auto *scope_var = scope.FindVar(Input(ConditionalOp::kScope));
110 111 112
      PADDLE_ENFORCE_NE(scope_var, nullptr,
                        platform::errors::InvalidArgument(
                            "Scope must be set in conditional block op"));
Y
Yu Yang 已提交
113
      auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
114 115 116
      PADDLE_ENFORCE_GT(scopes.size(), 0,
                        platform::errors::InvalidArgument(
                            "Scope must be set in conditional block op"));
Y
Yu Yang 已提交
117 118
      framework::Scope &cur_scope = *scopes[0];

D
dzhwinter 已提交
119
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
120
      auto *block = Attr<framework::BlockDesc *>("sub_block");
Y
Yu Yang 已提交
121

122 123
      VLOG(3) << "Conditional Grad block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
124
      exec.Run(*block->Program(), &cur_scope, block->ID(), false, true,
125 126
               inside_grads, /* force_disable_gc */ false,
               /* keep_kid_scopes */ false);
Y
Yu Yang 已提交
127

128 129
      AssignLocalGradientToParentScope(dev_place, cur_scope, scope,
                                       inside_grads, outside_grads);
130
      return;
Y
Yu Yang 已提交
131
    }
132 133

    AssignZeroToParentScope(dev_place, scope, inputs, outside_grads);
Y
Yu Yang 已提交
134 135 136
  }

 private:
137
  void AssignLocalGradientToParentScope(
D
dzhwinter 已提交
138
      const platform::Place &place, const framework::Scope &cur_scope,
139 140 141 142 143 144 145 146 147 148 149
      const framework::Scope &parent_scope,
      const std::vector<std::string> &inside_grads,
      const std::vector<std::string> &outside_grads) const {
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &inside_grad_name = inside_grads[i];
      VLOG(4) << "inside_grad_name = " << inside_grad_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *inside_var =
          cur_scope.FindLocalVar(inside_grad_name);
      if (inside_var == nullptr) {
Y
Yu Yang 已提交
150 151
        continue;
      }
152 153 154 155 156 157 158 159 160
      framework::Variable *outside_var =
          parent_scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }
      platform::DeviceContext *dev_ctx =
          platform::DeviceContextPool::Instance().Get(place);
      framework::VisitVarType(*inside_var,
                              AssignFunctor(outside_var, *dev_ctx));
Y
Yu Yang 已提交
161 162
    }
  }
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

  void AssignZeroToParentScope(
      const platform::Place &place, const framework::Scope &scope,
      const std::vector<std::string> &inputs,
      const std::vector<std::string> &outside_grads) const {
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &input_name = inputs[i];
      VLOG(4) << "input_name = " << input_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *input_var = scope.FindVar(input_name);
      if (input_var == nullptr) {
        continue;
      }
      framework::Variable *outside_var = scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }

      if (input_var->IsType<framework::LoDTensor>()) {
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensor>(), true,
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensor, which "
                              "doesn't match input_var %s",
                              outside_grad_name, input_name));
        AssignZeroToOutsideTensor(
            place, scope, input_var->Get<framework::LoDTensor>(),
            outside_var->GetMutable<framework::LoDTensor>());
      } else if (input_var->IsType<framework::LoDTensorArray>()) {
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensorArray>(),
                          true,
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensorArray, "
                              "which doesn't match input_var %s",
                              outside_grad_name, input_name));
        const auto &input_tensors = input_var->Get<framework::LoDTensorArray>();
        auto *outside_tensors =
            outside_var->GetMutable<framework::LoDTensorArray>();
        PADDLE_ENFORCE_EQ(input_tensors.size(), outside_tensors->size(),
                          platform::errors::InvalidArgument(
                              "LoDTensorArray outside_var %s doen't have same "
                              "size as input_var %s",
                              outside_grad_name, input_name));
        for (size_t j = 0; j < input_tensors.size(); ++j) {
          AssignZeroToOutsideTensor(place, scope, input_tensors[j],
                                    &((*outside_tensors)[j]));
        }
      } else {
        // TODO(huihuangzheng): add support for SelectedRows
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Conditional block grad op doesn't support non-LoDTensor output "
            "now"));
      }
    }
  }

  void AssignZeroToOutsideTensor(const platform::Place &place,
                                 const framework::Scope &cur_scope,
                                 const framework::LoDTensor &input_tensor,
                                 framework::LoDTensor *outside_tensor) const {
    if (!input_tensor.IsInitialized() || input_tensor.numel() == 0) {
      return;
    }
    VLOG(4) << "Assigning zero to " << outside_tensor;
    outside_tensor->Resize(input_tensor.dims());
    outside_tensor->mutable_data(place, input_tensor.type());
    const platform::DeviceContext *dev_ctx =
        platform::DeviceContextPool::Instance().Get(place);
    math::set_constant(*dev_ctx, outside_tensor, 0.0f);
    outside_tensor->set_lod(input_tensor.lod());
  }
Y
Yu Yang 已提交
234 235 236 237 238
};

class ConditionalBlockGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
Z
Zeng Jinle 已提交
239
    PADDLE_ENFORCE(context->HasInputs(ConditionalOp::kCondition));
240 241
    if (context->HasInputs(ConditionalOp::kInputs) &&
        context->HasOutputs(framework::GradVarName(ConditionalOp::kInputs))) {
Z
Zeng Jinle 已提交
242 243
      context->SetOutputsDim(framework::GradVarName(ConditionalOp::kInputs),
                             context->GetInputsDim(ConditionalOp::kInputs));
Y
Yu Yang 已提交
244 245 246 247
    }
  }
};

H
hong 已提交
248 249
template <typename T>
class ConditionalBlockGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
250
 public:
H
hong 已提交
251
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
252 253

 protected:
H
hong 已提交
254 255
  std::unique_ptr<T> Apply() const override {
    auto grad_op = new T();
Y
Yu Yang 已提交
256
    grad_op->SetType("conditional_block_grad");
Z
Zeng Jinle 已提交
257
    grad_op->SetInput(ConditionalOp::kCondition,
H
hong 已提交
258 259 260 261 262
                      this->Input(ConditionalOp::kCondition));
    grad_op->SetInput(ConditionalOp::kInputs,
                      this->Input(ConditionalOp::kInputs));
    grad_op->SetInput(ConditionalOp::kOutputs,
                      this->Output(ConditionalOp::kOutputs));
Z
Zeng Jinle 已提交
263
    grad_op->SetInput(framework::GradVarName(ConditionalOp::kOutputs),
H
hong 已提交
264 265 266
                      this->OutputGrad(ConditionalOp::kOutputs));
    grad_op->SetInput(ConditionalOp::kScope,
                      this->Output(ConditionalOp::kScope));
Z
Zeng Jinle 已提交
267
    grad_op->SetOutput(framework::GradVarName(ConditionalOp::kInputs),
H
hong 已提交
268
                       this->InputGrad(ConditionalOp::kInputs, false));
A
Abhinav Arora 已提交
269
    grad_op->SetBlockAttr("sub_block", this->grad_block_[0]);
H
hong 已提交
270 271 272
    grad_op->SetAttr("is_scalar_condition",
                     this->GetAttr("is_scalar_condition"));
    return std::unique_ptr<T>(grad_op);
Y
Yu Yang 已提交
273 274 275 276 277 278 279 280 281
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
                  ops::ConditionalBlockOpProtoMaker,
H
hong 已提交
282
                  ops::ConditionalBlockGradMaker<paddle::framework::OpDesc>);
Y
Yu Yang 已提交
283 284
REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
                  ops::ConditionalBlockGradInferShape);