conditional_block_op.cc 15.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/fluid/operators/controlflow/conditional_block_op.h"
16

17
#include "paddle/fluid/operators/assign_op.h"
18
#include "paddle/phi/kernels/funcs/math_function.h"
Y
Yu Yang 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Y
Yu Yang 已提交
24 25 26
namespace paddle {
namespace operators {

Z
Zeng Jinle 已提交
27 28 29 30 31 32
const char ConditionalOp::kInputs[] = "Input";
const char ConditionalOp::kOutputs[] = "Out";
const char ConditionalOp::kCondition[] = "Cond";
const char ConditionalOp::kScope[] = "Scope";
const char ConditionalOp::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";

Y
Yu Yang 已提交
33 34 35 36 37 38 39
class ConditionalBlockOp : public ConditionalOp {
 public:
  ConditionalBlockOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
40 41 42 43

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
44 45
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
46 47 48
      // When is_scalar_condition is True, the conditional variable is a scalar,
      // whether need to execute the operators in sub-block depends on the
      // conditional variable (Cond).
Z
Zeng Jinle 已提交
49
      auto xs = InputTensors(scope, ConditionalOp::kCondition);
50 51
      need_run = ScalarCondition(xs);
    } else {
52 53 54
      // When is_scalar_condition is False, the conditional variable maybe a
      // vector or tensor, whether need to execute the operators in sub-block
      // depends on the input variables (Input).
Z
Zeng Jinle 已提交
55
      auto xs = InputTensors(scope, ConditionalOp::kInputs);
56 57 58 59
      need_run =
          std::all_of(xs.begin(), xs.end(), [](const framework::LoDTensor *t) {
            return t->numel() != 0;
          });
60
    }
Y
Yu Yang 已提交
61 62

    if (need_run) {
Z
Zeng Jinle 已提交
63
      auto *scope_var = scope.FindVar(Output(ConditionalOp::kScope));
64
      PADDLE_ENFORCE_NOT_NULL(
65 66 67 68
          scope_var,
          platform::errors::PreconditionNotMet(
              "Expect Scope variable to be set in conditional_block_op, but "
              "got a null Scope variable. Please set the Scope variable."));
Y
Yu Yang 已提交
69 70 71 72
      auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
      scopes->resize(1);
      scopes->front() = &scope.NewScope();
      auto &cur_scope = *scopes->front();
73 74 75 76 77 78
#ifdef PADDLE_WITH_MKLDNN
      // (jczaja) Executor on being destroyed clears oneDNN cache and
      // reset registered model data layout. This is unwanted for nested
      // Executors (executors declared inside control ops)
      platform::DontClearMKLDNNCache(dev_place);
#endif
D
dzhwinter 已提交
79
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
80
      auto *block = Attr<framework::BlockDesc *>("sub_block");
81 82
      VLOG(3) << "Conditional block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
Z
Zeng Jinle 已提交
83 84
      auto &skip_vars =
          Attr<std::vector<std::string>>(ConditionalOp::kSkipEagerDeletionVars);
85 86 87 88 89 90 91
      exec.Run(*block->Program(),
               &cur_scope,
               block->ID(),
               false,
               true,
               skip_vars,
               /* force_disable_gc */ false,
92
               /* keep_kid_scopes */ true);
Y
Yu Yang 已提交
93 94 95 96
    }
  }
};

97 98 99
class ConditionalBlockInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
100 101
    PADDLE_ENFORCE_EQ(context->HasInputs(ConditionalOp::kCondition),
                      true,
102
                      platform::errors::InvalidArgument(
103
                          "conditional_block_op must have condition input."));
104 105 106
  }
};

Y
Yu Yang 已提交
107 108 109 110 111 112 113
class ConditionalBlockGradOp : public ConditionalOp {
 public:
  ConditionalBlockGradOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
114 115 116 117

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
118 119
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
Z
Zeng Jinle 已提交
120
      auto xs = this->InputTensors(scope, ConditionalOp::kCondition);
121 122
      need_run = ScalarCondition(xs);
    } else {
Z
Zeng Jinle 已提交
123
      auto xs = this->InputTensors(scope, ConditionalOp::kInputs);
124 125 126 127
      need_run =
          std::all_of(xs.begin(), xs.end(), [](const framework::LoDTensor *t) {
            return t->numel() != 0;
          });
128
    }
Y
Yu Yang 已提交
129

130 131 132
    const auto &inputs = Inputs(ConditionalOp::kInputs);
    const auto &outside_grads =
        Outputs(framework::GradVarName(ConditionalOp::kInputs));
Y
Yu Yang 已提交
133
    if (need_run) {
134 135 136 137 138 139
      std::vector<std::string> inside_grads;
      inside_grads.reserve(inputs.size());
      for (auto &in : inputs) {
        inside_grads.emplace_back(framework::GradVarName(in));
      }

Z
Zeng Jinle 已提交
140
      auto *scope_var = scope.FindVar(Input(ConditionalOp::kScope));
141
      PADDLE_ENFORCE_NOT_NULL(
142 143 144 145
          scope_var,
          platform::errors::PreconditionNotMet(
              "Expect Scope variable to be set in conditional_block_op, but "
              "got a null Scope variable. Please set the Scope variable."));
Y
Yu Yang 已提交
146
      auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
147
      PADDLE_ENFORCE_GT(
148 149
          scopes.size(),
          0,
150 151 152
          platform::errors::InvalidArgument(
              "Expect Scope variable contains at least 1 scope, but got: %d",
              scopes.size()));
Y
Yu Yang 已提交
153 154
      framework::Scope &cur_scope = *scopes[0];

D
dzhwinter 已提交
155
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
156
      auto *block = Attr<framework::BlockDesc *>("sub_block");
Y
Yu Yang 已提交
157

158 159
      VLOG(3) << "Conditional Grad block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
160 161 162 163 164 165 166
      exec.Run(*block->Program(),
               &cur_scope,
               block->ID(),
               false,
               true,
               inside_grads,
               /* force_disable_gc */ false,
167
               /* keep_kid_scopes */ false);
Y
Yu Yang 已提交
168

169 170
      AssignLocalGradientToParentScope(
          dev_place, cur_scope, scope, inside_grads, outside_grads, inputs);
171
      return;
Y
Yu Yang 已提交
172
    }
173 174

    AssignZeroToParentScope(dev_place, scope, inputs, outside_grads);
Y
Yu Yang 已提交
175 176 177
  }

 private:
178
  void AssignLocalGradientToParentScope(
179 180
      const platform::Place &place,
      const framework::Scope &cur_scope,
181 182
      const framework::Scope &parent_scope,
      const std::vector<std::string> &inside_grads,
183 184 185 186
      const std::vector<std::string> &outside_grads,
      const std::vector<std::string> &inputs) const {
    std::vector<std::string> assign_zero_outside_grads;
    std::vector<std::string> assign_zero_inputs;
187 188 189 190 191 192 193 194 195 196
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &inside_grad_name = inside_grads[i];
      VLOG(4) << "inside_grad_name = " << inside_grad_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *outside_var =
          parent_scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }
197 198 199 200 201 202 203
      framework::Variable *inside_var =
          cur_scope.FindLocalVar(inside_grad_name);
      if (inside_var == nullptr) {
        assign_zero_outside_grads.emplace_back(outside_grad_name);
        assign_zero_inputs.emplace_back(inputs[i]);
        continue;
      }
204 205 206 207
      platform::DeviceContext *dev_ctx =
          platform::DeviceContextPool::Instance().Get(place);
      framework::VisitVarType(*inside_var,
                              AssignFunctor(outside_var, *dev_ctx));
Y
Yu Yang 已提交
208
    }
209 210
    // Assign zero to the grad_vars that are in outside_grads but not in
    // inside_grads
211 212
    AssignZeroToParentScope(
        place, parent_scope, assign_zero_inputs, assign_zero_outside_grads);
Y
Yu Yang 已提交
213
  }
214 215

  void AssignZeroToParentScope(
216 217
      const platform::Place &place,
      const framework::Scope &scope,
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
      const std::vector<std::string> &inputs,
      const std::vector<std::string> &outside_grads) const {
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &input_name = inputs[i];
      VLOG(4) << "input_name = " << input_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *input_var = scope.FindVar(input_name);
      if (input_var == nullptr) {
        continue;
      }
      framework::Variable *outside_var = scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }

      if (input_var->IsType<framework::LoDTensor>()) {
235 236
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensor>(),
                          true,
237 238
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensor, which "
239
                              "doesn't match input_var %s.",
240 241
                              outside_grad_name,
                              input_name));
242
        AssignZeroToOutsideTensor(
243 244 245
            place,
            scope,
            input_var->Get<framework::LoDTensor>(),
246 247 248 249 250 251
            outside_var->GetMutable<framework::LoDTensor>());
      } else if (input_var->IsType<framework::LoDTensorArray>()) {
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensorArray>(),
                          true,
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensorArray, "
252
                              "which doesn't match input_var %s.",
253 254
                              outside_grad_name,
                              input_name));
255 256 257
        const auto &input_tensors = input_var->Get<framework::LoDTensorArray>();
        auto *outside_tensors =
            outside_var->GetMutable<framework::LoDTensorArray>();
258 259
        PADDLE_ENFORCE_EQ(input_tensors.size(),
                          outside_tensors->size(),
260 261
                          platform::errors::InvalidArgument(
                              "LoDTensorArray outside_var %s doen't have same "
262
                              "size as input_var %s.",
263 264
                              outside_grad_name,
                              input_name));
265
        for (size_t j = 0; j < input_tensors.size(); ++j) {
266 267
          AssignZeroToOutsideTensor(
              place, scope, input_tensors[j], &((*outside_tensors)[j]));
268 269 270 271 272
        }
      } else {
        // TODO(huihuangzheng): add support for SelectedRows
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Conditional block grad op doesn't support non-LoDTensor output "
273
            "now."));
274 275 276 277 278 279 280 281 282 283 284 285 286
      }
    }
  }

  void AssignZeroToOutsideTensor(const platform::Place &place,
                                 const framework::Scope &cur_scope,
                                 const framework::LoDTensor &input_tensor,
                                 framework::LoDTensor *outside_tensor) const {
    if (!input_tensor.IsInitialized() || input_tensor.numel() == 0) {
      return;
    }
    VLOG(4) << "Assigning zero to " << outside_tensor;
    outside_tensor->Resize(input_tensor.dims());
287
    outside_tensor->mutable_data(place, input_tensor.dtype());
288 289
    const platform::DeviceContext *dev_ctx =
        platform::DeviceContextPool::Instance().Get(place);
290
    phi::funcs::set_constant(*dev_ctx, outside_tensor, 0.0f);
291 292
    outside_tensor->set_lod(input_tensor.lod());
  }
Y
Yu Yang 已提交
293 294 295 296 297
};

class ConditionalBlockGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
298
    PADDLE_ENFORCE_EQ(
299 300
        context->HasInputs(ConditionalOp::kCondition),
        true,
301 302
        platform::errors::InvalidArgument(
            "Condition must be set in conditional_block_grad_op."));
303 304
    if (context->HasInputs(ConditionalOp::kInputs) &&
        context->HasOutputs(framework::GradVarName(ConditionalOp::kInputs))) {
Z
Zeng Jinle 已提交
305 306
      context->SetOutputsDim(framework::GradVarName(ConditionalOp::kInputs),
                             context->GetInputsDim(ConditionalOp::kInputs));
Y
Yu Yang 已提交
307 308 309 310
    }
  }
};

311 312 313 314 315 316 317
class ConditionalBlockGradInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    // NOTE(Aurelius84): VarType of Output is LoDTensor by default. In case of
    // Input is {Tensor, LoDTensorArray}, we need synchronous the Input's
    // VarType into Input@GRAD to avoid generating {Tensor, Tensor} as
    // Input@GRAD.
318 319 320
    auto input_size = ctx->InputSize(ConditionalOp::kInputs);
    auto output_size =
        ctx->OutputSize(framework::GradVarName(ConditionalOp::kInputs));
321 322
    PADDLE_ENFORCE_EQ(input_size,
                      output_size,
323 324 325 326 327 328 329 330
                      platform::errors::InvalidArgument(
                          "input_size and output_size should be equal for "
                          "conditional_block_grad_op."));
    for (size_t i = 0; i < output_size; ++i) {
      ctx->SyncTypeAndDataType(ConditionalOp::kInputs,
                               framework::GradVarName(ConditionalOp::kInputs),
                               i);
    }
331 332 333
  }
};

H
hong 已提交
334 335
template <typename T>
class ConditionalBlockGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
336
 public:
H
hong 已提交
337
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
338 339

 protected:
340
  void Apply(GradOpPtr<T> grad_op) const override {
Y
Yu Yang 已提交
341
    grad_op->SetType("conditional_block_grad");
Z
Zeng Jinle 已提交
342
    grad_op->SetInput(ConditionalOp::kCondition,
H
hong 已提交
343 344 345 346 347
                      this->Input(ConditionalOp::kCondition));
    grad_op->SetInput(ConditionalOp::kInputs,
                      this->Input(ConditionalOp::kInputs));
    grad_op->SetInput(ConditionalOp::kOutputs,
                      this->Output(ConditionalOp::kOutputs));
Z
Zeng Jinle 已提交
348
    grad_op->SetInput(framework::GradVarName(ConditionalOp::kOutputs),
H
hong 已提交
349 350 351
                      this->OutputGrad(ConditionalOp::kOutputs));
    grad_op->SetInput(ConditionalOp::kScope,
                      this->Output(ConditionalOp::kScope));
Z
Zeng Jinle 已提交
352
    grad_op->SetOutput(framework::GradVarName(ConditionalOp::kInputs),
H
hong 已提交
353
                       this->InputGrad(ConditionalOp::kInputs, false));
A
Abhinav Arora 已提交
354
    grad_op->SetBlockAttr("sub_block", this->grad_block_[0]);
H
hong 已提交
355 356
    grad_op->SetAttr("is_scalar_condition",
                     this->GetAttr("is_scalar_condition"));
Y
Yu Yang 已提交
357 358 359 360 361 362 363
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
364 365
REGISTER_OPERATOR(conditional_block,
                  ops::ConditionalBlockOp,
366
                  ops::ConditionalBlockInferShape,
Y
Yu Yang 已提交
367
                  ops::ConditionalBlockOpProtoMaker,
H
hong 已提交
368
                  ops::ConditionalBlockGradMaker<paddle::framework::OpDesc>);
369 370
REGISTER_OPERATOR(conditional_block_grad,
                  ops::ConditionalBlockGradOp,
371 372
                  ops::ConditionalBlockGradInferShape,
                  ops::ConditionalBlockGradInferVarType);