conditional_block_op.cc 12.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/fluid/operators/controlflow/conditional_block_op.h"
16

17
#include "paddle/fluid/operators/assign_op.h"
18
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
19 20 21 22

namespace paddle {
namespace operators {

Z
Zeng Jinle 已提交
23 24 25 26 27 28
const char ConditionalOp::kInputs[] = "Input";
const char ConditionalOp::kOutputs[] = "Out";
const char ConditionalOp::kCondition[] = "Cond";
const char ConditionalOp::kScope[] = "Scope";
const char ConditionalOp::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";

Y
Yu Yang 已提交
29 30 31 32 33 34 35
class ConditionalBlockOp : public ConditionalOp {
 public:
  ConditionalBlockOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
36 37 38 39

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
40 41
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
42 43 44
      // When is_scalar_condition is True, the conditional variable is a scalar,
      // whether need to execute the operators in sub-block depends on the
      // conditional variable (Cond).
Z
Zeng Jinle 已提交
45
      auto xs = InputTensors(scope, ConditionalOp::kCondition);
46 47
      need_run = ScalarCondition(xs);
    } else {
48 49 50
      // When is_scalar_condition is False, the conditional variable maybe a
      // vector or tensor, whether need to execute the operators in sub-block
      // depends on the input variables (Input).
Z
Zeng Jinle 已提交
51
      auto xs = InputTensors(scope, ConditionalOp::kInputs);
52 53 54 55
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
56 57

    if (need_run) {
Z
Zeng Jinle 已提交
58
      auto *scope_var = scope.FindVar(Output(ConditionalOp::kScope));
59 60 61
      PADDLE_ENFORCE_NOT_NULL(
          scope_var, platform::errors::PreconditionNotMet(
                         "Scope must be set in conditional_block_op."));
Y
Yu Yang 已提交
62 63 64 65
      auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
      scopes->resize(1);
      scopes->front() = &scope.NewScope();
      auto &cur_scope = *scopes->front();
D
dzhwinter 已提交
66
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
67
      auto *block = Attr<framework::BlockDesc *>("sub_block");
68 69
      VLOG(3) << "Conditional block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
Z
Zeng Jinle 已提交
70 71 72
      auto &skip_vars =
          Attr<std::vector<std::string>>(ConditionalOp::kSkipEagerDeletionVars);
      exec.Run(*block->Program(), &cur_scope, block->ID(), false, true,
73 74
               skip_vars, /* force_disable_gc */ false,
               /* keep_kid_scopes */ true);
Y
Yu Yang 已提交
75 76 77 78
    }
  }
};

79 80 81 82 83
class ConditionalBlockInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInputs(ConditionalOp::kCondition), true,
                      platform::errors::InvalidArgument(
84
                          "conditional_block_op must have condition input."));
85 86 87
  }
};

Y
Yu Yang 已提交
88 89 90 91 92 93 94
class ConditionalBlockGradOp : public ConditionalOp {
 public:
  ConditionalBlockGradOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
95 96 97 98

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
99 100
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
Z
Zeng Jinle 已提交
101
      auto xs = this->InputTensors(scope, ConditionalOp::kCondition);
102 103
      need_run = ScalarCondition(xs);
    } else {
Z
Zeng Jinle 已提交
104
      auto xs = this->InputTensors(scope, ConditionalOp::kInputs);
105 106 107 108
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
109

110 111 112
    const auto &inputs = Inputs(ConditionalOp::kInputs);
    const auto &outside_grads =
        Outputs(framework::GradVarName(ConditionalOp::kInputs));
Y
Yu Yang 已提交
113
    if (need_run) {
114 115 116 117 118 119
      std::vector<std::string> inside_grads;
      inside_grads.reserve(inputs.size());
      for (auto &in : inputs) {
        inside_grads.emplace_back(framework::GradVarName(in));
      }

Z
Zeng Jinle 已提交
120
      auto *scope_var = scope.FindVar(Input(ConditionalOp::kScope));
121 122 123
      PADDLE_ENFORCE_NOT_NULL(
          scope_var, platform::errors::PreconditionNotMet(
                         "Scope must be set in conditional block op."));
Y
Yu Yang 已提交
124
      auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
125 126
      PADDLE_ENFORCE_GT(scopes.size(), 0,
                        platform::errors::InvalidArgument(
127
                            "Scope must be set in conditional block op."));
Y
Yu Yang 已提交
128 129
      framework::Scope &cur_scope = *scopes[0];

D
dzhwinter 已提交
130
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
131
      auto *block = Attr<framework::BlockDesc *>("sub_block");
Y
Yu Yang 已提交
132

133 134
      VLOG(3) << "Conditional Grad block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
135
      exec.Run(*block->Program(), &cur_scope, block->ID(), false, true,
136 137
               inside_grads, /* force_disable_gc */ false,
               /* keep_kid_scopes */ false);
Y
Yu Yang 已提交
138

139 140
      AssignLocalGradientToParentScope(dev_place, cur_scope, scope,
                                       inside_grads, outside_grads);
141
      return;
Y
Yu Yang 已提交
142
    }
143 144

    AssignZeroToParentScope(dev_place, scope, inputs, outside_grads);
Y
Yu Yang 已提交
145 146 147
  }

 private:
148
  void AssignLocalGradientToParentScope(
D
dzhwinter 已提交
149
      const platform::Place &place, const framework::Scope &cur_scope,
150 151 152 153 154 155 156 157 158 159 160
      const framework::Scope &parent_scope,
      const std::vector<std::string> &inside_grads,
      const std::vector<std::string> &outside_grads) const {
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &inside_grad_name = inside_grads[i];
      VLOG(4) << "inside_grad_name = " << inside_grad_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *inside_var =
          cur_scope.FindLocalVar(inside_grad_name);
      if (inside_var == nullptr) {
Y
Yu Yang 已提交
161 162
        continue;
      }
163 164 165 166 167 168 169 170 171
      framework::Variable *outside_var =
          parent_scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }
      platform::DeviceContext *dev_ctx =
          platform::DeviceContextPool::Instance().Get(place);
      framework::VisitVarType(*inside_var,
                              AssignFunctor(outside_var, *dev_ctx));
Y
Yu Yang 已提交
172 173
    }
  }
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

  void AssignZeroToParentScope(
      const platform::Place &place, const framework::Scope &scope,
      const std::vector<std::string> &inputs,
      const std::vector<std::string> &outside_grads) const {
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &input_name = inputs[i];
      VLOG(4) << "input_name = " << input_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *input_var = scope.FindVar(input_name);
      if (input_var == nullptr) {
        continue;
      }
      framework::Variable *outside_var = scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }

      if (input_var->IsType<framework::LoDTensor>()) {
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensor>(), true,
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensor, which "
197
                              "doesn't match input_var %s.",
198 199 200 201 202 203 204 205 206
                              outside_grad_name, input_name));
        AssignZeroToOutsideTensor(
            place, scope, input_var->Get<framework::LoDTensor>(),
            outside_var->GetMutable<framework::LoDTensor>());
      } else if (input_var->IsType<framework::LoDTensorArray>()) {
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensorArray>(),
                          true,
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensorArray, "
207
                              "which doesn't match input_var %s.",
208 209 210 211 212 213 214
                              outside_grad_name, input_name));
        const auto &input_tensors = input_var->Get<framework::LoDTensorArray>();
        auto *outside_tensors =
            outside_var->GetMutable<framework::LoDTensorArray>();
        PADDLE_ENFORCE_EQ(input_tensors.size(), outside_tensors->size(),
                          platform::errors::InvalidArgument(
                              "LoDTensorArray outside_var %s doen't have same "
215
                              "size as input_var %s.",
216 217 218 219 220 221 222 223 224
                              outside_grad_name, input_name));
        for (size_t j = 0; j < input_tensors.size(); ++j) {
          AssignZeroToOutsideTensor(place, scope, input_tensors[j],
                                    &((*outside_tensors)[j]));
        }
      } else {
        // TODO(huihuangzheng): add support for SelectedRows
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Conditional block grad op doesn't support non-LoDTensor output "
225
            "now."));
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
      }
    }
  }

  void AssignZeroToOutsideTensor(const platform::Place &place,
                                 const framework::Scope &cur_scope,
                                 const framework::LoDTensor &input_tensor,
                                 framework::LoDTensor *outside_tensor) const {
    if (!input_tensor.IsInitialized() || input_tensor.numel() == 0) {
      return;
    }
    VLOG(4) << "Assigning zero to " << outside_tensor;
    outside_tensor->Resize(input_tensor.dims());
    outside_tensor->mutable_data(place, input_tensor.type());
    const platform::DeviceContext *dev_ctx =
        platform::DeviceContextPool::Instance().Get(place);
    math::set_constant(*dev_ctx, outside_tensor, 0.0f);
    outside_tensor->set_lod(input_tensor.lod());
  }
Y
Yu Yang 已提交
245 246 247 248 249
};

class ConditionalBlockGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
250 251 252 253
    PADDLE_ENFORCE_EQ(
        context->HasInputs(ConditionalOp::kCondition), true,
        platform::errors::InvalidArgument(
            "Condition must be set in conditional_block_grad_op."));
254 255
    if (context->HasInputs(ConditionalOp::kInputs) &&
        context->HasOutputs(framework::GradVarName(ConditionalOp::kInputs))) {
Z
Zeng Jinle 已提交
256 257
      context->SetOutputsDim(framework::GradVarName(ConditionalOp::kInputs),
                             context->GetInputsDim(ConditionalOp::kInputs));
Y
Yu Yang 已提交
258 259 260 261
    }
  }
};

H
hong 已提交
262 263
template <typename T>
class ConditionalBlockGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
264
 public:
H
hong 已提交
265
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
266 267

 protected:
268
  void Apply(GradOpPtr<T> grad_op) const override {
Y
Yu Yang 已提交
269
    grad_op->SetType("conditional_block_grad");
Z
Zeng Jinle 已提交
270
    grad_op->SetInput(ConditionalOp::kCondition,
H
hong 已提交
271 272 273 274 275
                      this->Input(ConditionalOp::kCondition));
    grad_op->SetInput(ConditionalOp::kInputs,
                      this->Input(ConditionalOp::kInputs));
    grad_op->SetInput(ConditionalOp::kOutputs,
                      this->Output(ConditionalOp::kOutputs));
Z
Zeng Jinle 已提交
276
    grad_op->SetInput(framework::GradVarName(ConditionalOp::kOutputs),
H
hong 已提交
277 278 279
                      this->OutputGrad(ConditionalOp::kOutputs));
    grad_op->SetInput(ConditionalOp::kScope,
                      this->Output(ConditionalOp::kScope));
Z
Zeng Jinle 已提交
280
    grad_op->SetOutput(framework::GradVarName(ConditionalOp::kInputs),
H
hong 已提交
281
                       this->InputGrad(ConditionalOp::kInputs, false));
A
Abhinav Arora 已提交
282
    grad_op->SetBlockAttr("sub_block", this->grad_block_[0]);
H
hong 已提交
283 284
    grad_op->SetAttr("is_scalar_condition",
                     this->GetAttr("is_scalar_condition"));
Y
Yu Yang 已提交
285 286 287 288 289 290 291 292
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
293
                  ops::ConditionalBlockInferShape,
Y
Yu Yang 已提交
294
                  ops::ConditionalBlockOpProtoMaker,
H
hong 已提交
295
                  ops::ConditionalBlockGradMaker<paddle::framework::OpDesc>);
Y
Yu Yang 已提交
296 297
REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
                  ops::ConditionalBlockGradInferShape);