conditional_block_op.cc 14.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/fluid/operators/controlflow/conditional_block_op.h"
16

17
#include "paddle/fluid/operators/assign_op.h"
18
#include "paddle/phi/kernels/funcs/math_function.h"
Y
Yu Yang 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Y
Yu Yang 已提交
24 25 26
namespace paddle {
namespace operators {

Z
Zeng Jinle 已提交
27 28 29 30 31 32
const char ConditionalOp::kInputs[] = "Input";
const char ConditionalOp::kOutputs[] = "Out";
const char ConditionalOp::kCondition[] = "Cond";
const char ConditionalOp::kScope[] = "Scope";
const char ConditionalOp::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";

Y
Yu Yang 已提交
33 34 35 36 37 38 39
class ConditionalBlockOp : public ConditionalOp {
 public:
  ConditionalBlockOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
40 41 42 43

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
44 45
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
46 47 48
      // When is_scalar_condition is True, the conditional variable is a scalar,
      // whether need to execute the operators in sub-block depends on the
      // conditional variable (Cond).
Z
Zeng Jinle 已提交
49
      auto xs = InputTensors(scope, ConditionalOp::kCondition);
50 51
      need_run = ScalarCondition(xs);
    } else {
52 53 54
      // When is_scalar_condition is False, the conditional variable maybe a
      // vector or tensor, whether need to execute the operators in sub-block
      // depends on the input variables (Input).
Z
Zeng Jinle 已提交
55
      auto xs = InputTensors(scope, ConditionalOp::kInputs);
56 57 58 59
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
60 61

    if (need_run) {
Z
Zeng Jinle 已提交
62
      auto *scope_var = scope.FindVar(Output(ConditionalOp::kScope));
63
      PADDLE_ENFORCE_NOT_NULL(
64 65 66 67
          scope_var,
          platform::errors::PreconditionNotMet(
              "Expect Scope variable to be set in conditional_block_op, but "
              "got a null Scope variable. Please set the Scope variable."));
Y
Yu Yang 已提交
68 69 70 71
      auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
      scopes->resize(1);
      scopes->front() = &scope.NewScope();
      auto &cur_scope = *scopes->front();
72 73 74 75 76 77
#ifdef PADDLE_WITH_MKLDNN
      // (jczaja) Executor on being destroyed clears oneDNN cache and
      // reset registered model data layout. This is unwanted for nested
      // Executors (executors declared inside control ops)
      platform::DontClearMKLDNNCache(dev_place);
#endif
D
dzhwinter 已提交
78
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
79
      auto *block = Attr<framework::BlockDesc *>("sub_block");
80 81
      VLOG(3) << "Conditional block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
Z
Zeng Jinle 已提交
82 83 84
      auto &skip_vars =
          Attr<std::vector<std::string>>(ConditionalOp::kSkipEagerDeletionVars);
      exec.Run(*block->Program(), &cur_scope, block->ID(), false, true,
85 86
               skip_vars, /* force_disable_gc */ false,
               /* keep_kid_scopes */ true);
Y
Yu Yang 已提交
87 88 89 90
    }
  }
};

91 92 93 94 95
class ConditionalBlockInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInputs(ConditionalOp::kCondition), true,
                      platform::errors::InvalidArgument(
96
                          "conditional_block_op must have condition input."));
97 98 99
  }
};

Y
Yu Yang 已提交
100 101 102 103 104 105 106
class ConditionalBlockGradOp : public ConditionalOp {
 public:
  ConditionalBlockGradOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
107 108 109 110

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
111 112
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
Z
Zeng Jinle 已提交
113
      auto xs = this->InputTensors(scope, ConditionalOp::kCondition);
114 115
      need_run = ScalarCondition(xs);
    } else {
Z
Zeng Jinle 已提交
116
      auto xs = this->InputTensors(scope, ConditionalOp::kInputs);
117 118 119 120
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
121

122 123 124
    const auto &inputs = Inputs(ConditionalOp::kInputs);
    const auto &outside_grads =
        Outputs(framework::GradVarName(ConditionalOp::kInputs));
Y
Yu Yang 已提交
125
    if (need_run) {
126 127 128 129 130 131
      std::vector<std::string> inside_grads;
      inside_grads.reserve(inputs.size());
      for (auto &in : inputs) {
        inside_grads.emplace_back(framework::GradVarName(in));
      }

Z
Zeng Jinle 已提交
132
      auto *scope_var = scope.FindVar(Input(ConditionalOp::kScope));
133
      PADDLE_ENFORCE_NOT_NULL(
134 135 136 137
          scope_var,
          platform::errors::PreconditionNotMet(
              "Expect Scope variable to be set in conditional_block_op, but "
              "got a null Scope variable. Please set the Scope variable."));
Y
Yu Yang 已提交
138
      auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
139 140 141 142 143
      PADDLE_ENFORCE_GT(
          scopes.size(), 0,
          platform::errors::InvalidArgument(
              "Expect Scope variable contains at least 1 scope, but got: %d",
              scopes.size()));
Y
Yu Yang 已提交
144 145
      framework::Scope &cur_scope = *scopes[0];

D
dzhwinter 已提交
146
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
147
      auto *block = Attr<framework::BlockDesc *>("sub_block");
Y
Yu Yang 已提交
148

149 150
      VLOG(3) << "Conditional Grad block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
151
      exec.Run(*block->Program(), &cur_scope, block->ID(), false, true,
152 153
               inside_grads, /* force_disable_gc */ false,
               /* keep_kid_scopes */ false);
Y
Yu Yang 已提交
154

155
      AssignLocalGradientToParentScope(dev_place, cur_scope, scope,
156
                                       inside_grads, outside_grads, inputs);
157
      return;
Y
Yu Yang 已提交
158
    }
159 160

    AssignZeroToParentScope(dev_place, scope, inputs, outside_grads);
Y
Yu Yang 已提交
161 162 163
  }

 private:
164
  void AssignLocalGradientToParentScope(
D
dzhwinter 已提交
165
      const platform::Place &place, const framework::Scope &cur_scope,
166 167
      const framework::Scope &parent_scope,
      const std::vector<std::string> &inside_grads,
168 169 170 171
      const std::vector<std::string> &outside_grads,
      const std::vector<std::string> &inputs) const {
    std::vector<std::string> assign_zero_outside_grads;
    std::vector<std::string> assign_zero_inputs;
172 173 174 175 176 177 178 179 180 181
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &inside_grad_name = inside_grads[i];
      VLOG(4) << "inside_grad_name = " << inside_grad_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *outside_var =
          parent_scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }
182 183 184 185 186 187 188
      framework::Variable *inside_var =
          cur_scope.FindLocalVar(inside_grad_name);
      if (inside_var == nullptr) {
        assign_zero_outside_grads.emplace_back(outside_grad_name);
        assign_zero_inputs.emplace_back(inputs[i]);
        continue;
      }
189 190 191 192
      platform::DeviceContext *dev_ctx =
          platform::DeviceContextPool::Instance().Get(place);
      framework::VisitVarType(*inside_var,
                              AssignFunctor(outside_var, *dev_ctx));
Y
Yu Yang 已提交
193
    }
194 195 196 197
    // Assign zero to the grad_vars that are in outside_grads but not in
    // inside_grads
    AssignZeroToParentScope(place, parent_scope, assign_zero_inputs,
                            assign_zero_outside_grads);
Y
Yu Yang 已提交
198
  }
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

  void AssignZeroToParentScope(
      const platform::Place &place, const framework::Scope &scope,
      const std::vector<std::string> &inputs,
      const std::vector<std::string> &outside_grads) const {
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &input_name = inputs[i];
      VLOG(4) << "input_name = " << input_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *input_var = scope.FindVar(input_name);
      if (input_var == nullptr) {
        continue;
      }
      framework::Variable *outside_var = scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }

      if (input_var->IsType<framework::LoDTensor>()) {
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensor>(), true,
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensor, which "
222
                              "doesn't match input_var %s.",
223 224 225 226 227 228 229 230 231
                              outside_grad_name, input_name));
        AssignZeroToOutsideTensor(
            place, scope, input_var->Get<framework::LoDTensor>(),
            outside_var->GetMutable<framework::LoDTensor>());
      } else if (input_var->IsType<framework::LoDTensorArray>()) {
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensorArray>(),
                          true,
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensorArray, "
232
                              "which doesn't match input_var %s.",
233 234 235 236 237 238 239
                              outside_grad_name, input_name));
        const auto &input_tensors = input_var->Get<framework::LoDTensorArray>();
        auto *outside_tensors =
            outside_var->GetMutable<framework::LoDTensorArray>();
        PADDLE_ENFORCE_EQ(input_tensors.size(), outside_tensors->size(),
                          platform::errors::InvalidArgument(
                              "LoDTensorArray outside_var %s doen't have same "
240
                              "size as input_var %s.",
241 242 243 244 245 246 247 248 249
                              outside_grad_name, input_name));
        for (size_t j = 0; j < input_tensors.size(); ++j) {
          AssignZeroToOutsideTensor(place, scope, input_tensors[j],
                                    &((*outside_tensors)[j]));
        }
      } else {
        // TODO(huihuangzheng): add support for SelectedRows
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Conditional block grad op doesn't support non-LoDTensor output "
250
            "now."));
251 252 253 254 255 256 257 258 259 260 261 262 263
      }
    }
  }

  void AssignZeroToOutsideTensor(const platform::Place &place,
                                 const framework::Scope &cur_scope,
                                 const framework::LoDTensor &input_tensor,
                                 framework::LoDTensor *outside_tensor) const {
    if (!input_tensor.IsInitialized() || input_tensor.numel() == 0) {
      return;
    }
    VLOG(4) << "Assigning zero to " << outside_tensor;
    outside_tensor->Resize(input_tensor.dims());
264
    outside_tensor->mutable_data(place, input_tensor.dtype());
265 266
    const platform::DeviceContext *dev_ctx =
        platform::DeviceContextPool::Instance().Get(place);
267
    phi::funcs::set_constant(*dev_ctx, outside_tensor, 0.0f);
268 269
    outside_tensor->set_lod(input_tensor.lod());
  }
Y
Yu Yang 已提交
270 271 272 273 274
};

class ConditionalBlockGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
275 276 277 278
    PADDLE_ENFORCE_EQ(
        context->HasInputs(ConditionalOp::kCondition), true,
        platform::errors::InvalidArgument(
            "Condition must be set in conditional_block_grad_op."));
279 280
    if (context->HasInputs(ConditionalOp::kInputs) &&
        context->HasOutputs(framework::GradVarName(ConditionalOp::kInputs))) {
Z
Zeng Jinle 已提交
281 282
      context->SetOutputsDim(framework::GradVarName(ConditionalOp::kInputs),
                             context->GetInputsDim(ConditionalOp::kInputs));
Y
Yu Yang 已提交
283 284 285 286
    }
  }
};

287 288 289 290 291 292 293
class ConditionalBlockGradInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    // NOTE(Aurelius84): VarType of Output is LoDTensor by default. In case of
    // Input is {Tensor, LoDTensorArray}, we need synchronous the Input's
    // VarType into Input@GRAD to avoid generating {Tensor, Tensor} as
    // Input@GRAD.
294 295 296 297 298 299 300 301 302 303 304 305
    auto input_size = ctx->InputSize(ConditionalOp::kInputs);
    auto output_size =
        ctx->OutputSize(framework::GradVarName(ConditionalOp::kInputs));
    PADDLE_ENFORCE_EQ(input_size, output_size,
                      platform::errors::InvalidArgument(
                          "input_size and output_size should be equal for "
                          "conditional_block_grad_op."));
    for (size_t i = 0; i < output_size; ++i) {
      ctx->SyncTypeAndDataType(ConditionalOp::kInputs,
                               framework::GradVarName(ConditionalOp::kInputs),
                               i);
    }
306 307 308
  }
};

H
hong 已提交
309 310
template <typename T>
class ConditionalBlockGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
311
 public:
H
hong 已提交
312
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
313 314

 protected:
315
  void Apply(GradOpPtr<T> grad_op) const override {
Y
Yu Yang 已提交
316
    grad_op->SetType("conditional_block_grad");
Z
Zeng Jinle 已提交
317
    grad_op->SetInput(ConditionalOp::kCondition,
H
hong 已提交
318 319 320 321 322
                      this->Input(ConditionalOp::kCondition));
    grad_op->SetInput(ConditionalOp::kInputs,
                      this->Input(ConditionalOp::kInputs));
    grad_op->SetInput(ConditionalOp::kOutputs,
                      this->Output(ConditionalOp::kOutputs));
Z
Zeng Jinle 已提交
323
    grad_op->SetInput(framework::GradVarName(ConditionalOp::kOutputs),
H
hong 已提交
324 325 326
                      this->OutputGrad(ConditionalOp::kOutputs));
    grad_op->SetInput(ConditionalOp::kScope,
                      this->Output(ConditionalOp::kScope));
Z
Zeng Jinle 已提交
327
    grad_op->SetOutput(framework::GradVarName(ConditionalOp::kInputs),
H
hong 已提交
328
                       this->InputGrad(ConditionalOp::kInputs, false));
A
Abhinav Arora 已提交
329
    grad_op->SetBlockAttr("sub_block", this->grad_block_[0]);
H
hong 已提交
330 331
    grad_op->SetAttr("is_scalar_condition",
                     this->GetAttr("is_scalar_condition"));
Y
Yu Yang 已提交
332 333 334 335 336 337 338 339
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
340
                  ops::ConditionalBlockInferShape,
Y
Yu Yang 已提交
341
                  ops::ConditionalBlockOpProtoMaker,
H
hong 已提交
342
                  ops::ConditionalBlockGradMaker<paddle::framework::OpDesc>);
Y
Yu Yang 已提交
343
REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
344 345
                  ops::ConditionalBlockGradInferShape,
                  ops::ConditionalBlockGradInferVarType);