random.py 41.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

Z
zhiboniu 已提交
17 18
from ..framework import core
from ..framework import convert_np_dtype_to_dtype_, dygraph_only
19
from ..framework import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
W
wanghuancoder 已提交
23
from paddle import _C_ops
Z
zhiboniu 已提交
24
from paddle.static import Variable
F
From00 已提交
25
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph, _current_expected_place
S
silingtong123 已提交
26

27 28
__all__ = []

S
silingtong123 已提交
29

L
Leo Chen 已提交
30 31 32
def bernoulli(x, name=None):
    """

33
    Returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
L
Leo Chen 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

53
            import paddle
L
Leo Chen 已提交
54

L
Leo Chen 已提交
55 56 57
            paddle.set_device('cpu')  # on CPU device
            paddle.seed(100) 

58
            x = paddle.rand([2,3])
L
Leo Chen 已提交
59 60 61
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
62

63
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
64 65 66
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
67 68 69

    """

H
hong 已提交
70 71 72 73
    if in_dygraph_mode():
        return _C_ops.final_state_bernoulli(x)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
74
        return _C_ops.bernoulli(x)
L
Leo Chen 已提交
75 76 77 78 79 80 81 82

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
83
    out.stop_gradient = True
L
Leo Chen 已提交
84 85 86
    return out


87
def poisson(x, name=None):
88
    r"""
89
    Returns a tensor filled with random number from a Poisson Distribution.
90 91 92

    .. math::

93
        out_i \sim Poisson (lambda = x_i)
94 95 96 97 98 99 100 101 102 103 104 105 106 107

    Args:
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
108
            paddle.set_device('cpu')
109
            paddle.seed(100)
110 111 112

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
113 114
            #[[2., 5., 0.],
            # [5., 1., 3.]]
115 116 117

    """

Z
zhiboniu 已提交
118
    if paddle.in_dynamic_mode():
119 120 121 122 123 124 125 126 127 128 129
        return _C_ops.poisson(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")

    helper = LayerHelper("poisson", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='poisson', inputs={'X': x}, outputs={'Out': out}, attrs={})
    return out


P
pangyoki 已提交
130 131
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
132
    Returns a Tensor filled with random values sampled from a Multinomical
P
pangyoki 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

152 153
            import paddle

C
cnn 已提交
154
            paddle.seed(100) # on CPU device
155
            x = paddle.rand([2,4])
156
            print(x)
157 158 159
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
160
            paddle.seed(200) # on CPU device
161
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
162
            print(out1)
163 164 165 166 167 168 169
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
170
            paddle.seed(300) # on CPU device
171
            out3 = paddle.multinomial(x, num_samples=3)
172
            print(out3)
173 174
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
175 176 177

    """

178 179 180
    assert core.is_compiled_with_rocm() == False, (
        "multinomial op is not supported on ROCM yet.")

H
hong 已提交
181 182 183 184
    if in_dygraph_mode():
        return _C_ops.final_state_multinomial(x, num_samples, replacement)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
185 186
        return _C_ops.multinomial(x, 'num_samples', num_samples, 'replacement',
                                  replacement)
P
pangyoki 已提交
187 188 189 190 191 192 193 194 195 196 197 198

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
    helper.append_op(
        type='multinomial',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={'num_samples': num_samples,
               'replacement': replacement})
199
    out.stop_gradient = True
P
pangyoki 已提交
200 201 202
    return out


203
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
204
    """
205
    Returns a Tensor filled with random values sampled from a Gaussian
206 207 208
    distribution, with ``shape`` and ``dtype``.

    Args:
209
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
210 211 212 213
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
214 215
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
216
            is 1.0.
217 218
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
219 220 221
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
222
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
223 224 225 226 227

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
228 229 230
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

231 232 233 234
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
235 236
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
237 238 239
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

240 241 242 243 244 245 246 247 248
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
        return _C_ops.final_state_gaussian_random(shape,
                                                  float(mean),
                                                  float(std), seed, dtype,
                                                  place)

    if _in_legacy_dygraph():
249
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
250 251 252
        return _C_ops.gaussian_random('shape', shape, 'mean',
                                      float(mean), 'std',
                                      float(std), 'seed', seed, 'dtype', dtype)
253

254
    check_shape(shape, op_type_for_check)
255 256 257 258 259 260 261 262 263 264
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
265
    utils.get_shape_tensor_inputs(
266 267
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

268
    helper = LayerHelper('gaussian', **locals())
269 270 271 272 273 274 275 276 277 278 279 280
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
281
    Returns a Tensor filled with random values sampled from a standard
282 283 284 285
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
286
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
287 288 289 290
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
291
        dtype (str|np.dtype, optional): The data type of the output Tensor.
292 293 294
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
295 296 297 298 299 300 301 302 303 304 305 306 307 308
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
309
            out1 = paddle.standard_normal(shape=[2, 3])
310 311 312 313
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
314 315
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
316
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
317 318 319 320 321 322 323 324
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
325
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
326
            out3 = paddle.standard_normal(shape_tensor)
327 328 329 330
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
331
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
332 333


Z
zhupengyang 已提交
334 335
def randn(shape, dtype=None, name=None):
    """
336
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
386 387 388 389


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
390
    Returns a Tensor filled with random values sampled from a normal
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

430
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
431 432 433
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

434
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
435 436 437 438
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
Z
zhiboniu 已提交
439
    if not paddle.in_dynamic_mode():
440 441 442 443 444 445 446 447 448 449 450 451 452
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
453
            check_shape(shape, 'normal')
454 455 456 457 458 459 460 461 462 463 464 465 466 467

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
468
        return gaussian(shape=shape, mean=mean, std=std, name=name)
469 470

    out = out * std + mean
Z
zhiboniu 已提交
471
    if not paddle.in_dynamic_mode():
472 473 474 475
        out.stop_grediant = True
    return out


476
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
477
    """
478
    Returns a Tensor filled with random values sampled from a uniform
P
pangyoki 已提交
479 480 481
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
482

Z
zhupengyang 已提交
483
    .. code-block:: text
李灿 已提交
484

P
pangyoki 已提交
485 486 487 488 489 490 491 492 493 494 495
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
496 497 498 499
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
500 501 502 503
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
504 505 506
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
507
            time. Default is 0.
508 509
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
P
pangyoki 已提交
510 511 512 513 514 515 516

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python
517
          :name: code-example1
P
pangyoki 已提交
518 519 520 521 522
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
523 524 525 526
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
527 528 529

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
530 531 532 533 534
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
535 536 537

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
538
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
539 540 541
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
542
    """
543 544 545 546
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
547 548
                "uniform/rand only supports [float32, float64], but the default dtype is {}".
                format(dtype))
549

P
pangyoki 已提交
550 551 552
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

553 554 555 556 557 558 559 560
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        return _C_ops.final_state_uniform_random(shape, dtype,
                                                 float(min),
                                                 float(max), seed,
                                                 _current_expected_place())

    if _in_legacy_dygraph():
561
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
562 563 564
        return _C_ops.uniform_random('shape', shape, 'min',
                                     float(min), 'max',
                                     float(max), 'seed', seed, 'dtype', dtype)
P
pangyoki 已提交
565

566 567
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
568 569 570

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
571
    utils.get_shape_tensor_inputs(
572
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
P
pangyoki 已提交
573

574
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
575 576 577 578
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
579
    out.stop_gradient = True
P
pangyoki 已提交
580 581 582
    return out


J
JYChen 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
    This is the inplace version of OP ``uniform``, which returns a Tensor filled 
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
    
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. If seed is 0, 
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
            
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
618 619
    return _C_ops.uniform_random_inplace_(x, 'min', min, 'max', max, 'seed',
                                          seed)
J
JYChen 已提交
620 621


622
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
623
    """
624
    Returns a Tensor filled with random integers from a discrete uniform
625 626
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
627 628

    Args:
629
        low (int): The lower bound on the range of random values to generate.
630 631
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
632
        high (int, optional): The upper bound on the range of random values to
633 634
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
635
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
636 637 638 639
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
640
        dtype (str|np.dtype, optional): The data type of the
641 642
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
643
        name (str, optional): The default value is None.  Normally there is no
644 645
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
646 647

    Returns: 
648 649
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
650 651 652

    Examples:
        .. code-block:: python
653

654
            import paddle
655

656 657
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
658
            out1 = paddle.randint(low=-5, high=5, shape=[3])
659 660 661 662
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
663 664 665
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
666 667 668 669 670
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
671
            shape_tensor = paddle.to_tensor(3)
Z
zhupengyang 已提交
672
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
673 674 675 676
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
677
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
678 679 680 681 682
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
683
            out5 = paddle.randint(10)
684
            # [7]  # random
S
silingtong123 已提交
685

686 687
    """
    if high is None:
688 689 690 691
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
692 693
        high = low
        low = 0
S
silingtong123 已提交
694 695
    if dtype is None:
        dtype = 'int64'
696 697
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
698

F
From00 已提交
699 700 701 702 703
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
        return _C_ops.final_state_randint(low, high, shape, dtype, place)
    if _in_legacy_dygraph():
704
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
705 706
        return _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                              0, 'dtype', dtype)
S
silingtong123 已提交
707

708
    check_shape(shape, 'randint')
709 710
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
711 712 713 714
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

715 716
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
717
    utils.get_shape_tensor_inputs(
718 719 720 721 722 723
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
724
    out.stop_gradient = True
S
silingtong123 已提交
725
    return out
C
cc 已提交
726 727


728 729
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
730
    Returns a Tensor filled with random integers from a discrete uniform
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
    (use ``dtype`` if ``dtype`` is not None) 
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
        x (Tensor): The input tensor which specifies shape. The dtype of ``x`` 
            can be bool, int32, int64, float16, float32, float64.
        low (int): The lower bound on the range of random values to generate.
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
        dtype (str|np.dtype, optional): The data type of the
            output tensor. Supported data types: bool, int32, int64, float16, 
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    shape = x.shape

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

Z
zhiboniu 已提交
870
    if paddle.in_dynamic_mode():
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
        shape = utils.convert_shape_to_list(shape)
        out = _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                             0, 'dtype', core.VarDesc.VarType.INT64)
        out = paddle.cast(out, dtype)
        return out

    check_shape(shape, 'randint_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32',
                 'int64'], 'randint_like')

    inputs = dict()
    attrs = {
        'low': low,
        'high': high,
        'seed': 0,
        'dtype': core.VarDesc.VarType.INT64
    }
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint_like')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    out.stop_gradient = True
    out = paddle.cast(out, dtype)
    return out


902
def randperm(n, dtype="int64", name=None):
C
cc 已提交
903
    """
904
    Returns a 1-D Tensor filled with random permutation values from 0
905
    to n-1, with ``dtype``.
C
cc 已提交
906 907

    Args:
908 909
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
910 911
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
912
        name (str, optional): The default value is None. Normally there is no
913 914
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
915 916

    Returns:
917 918
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
919 920 921 922

    Examples:
        .. code-block:: python

923
            import paddle
C
cc 已提交
924

925
            out1 = paddle.randperm(5)
926
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
927

928
            out2 = paddle.randperm(7, 'int32')
929
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
930 931
 
    """
932 933 934
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
935
    if in_dygraph_mode():
F
From00 已提交
936
        return _C_ops.final_state_randperm(n, dtype, _current_expected_place())
Z
zyfncg 已提交
937
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
938
        return _C_ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
939 940 941

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
942 943
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
944 945

    helper = LayerHelper("randperm", **locals())
946 947 948 949
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
950
    out.stop_gradient = True
C
cc 已提交
951
    return out
X
Xing Wu 已提交
952 953


954
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
955
    """
956
    Returns a Tensor filled with random values sampled from a uniform
957
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
958 959

    Args:
960
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
961 962 963 964
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
965
        dtype (str|np.dtype, optional): The data type of the output Tensor.
966 967 968
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
969
        name (str, optional): The default value is None. Normally there is no
970 971
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
972

X
Xing Wu 已提交
973
    Returns:
974 975
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
976 977 978 979

    Examples:
        .. code-block:: python

980
            import paddle
981

982
            # example 1: attr shape is a list which doesn't contain Tensor.
983
            out1 = paddle.rand(shape=[2, 3])
984 985 986 987
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
988 989
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
990
            out2 = paddle.rand(shape=[dim1, dim2, 2])
991 992 993 994 995 996 997 998
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
999
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1000
            out3 = paddle.rand(shape_tensor)
1001 1002
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1003 1004

    """
1005
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1006 1007 1008


def exponential_(x, lam=1.0, name=None):
1009
    r"""
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

    ``lam`` is :math:`\lambda` parameter of Exponential Distribution. 
    
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1020
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
Z
zhiboniu 已提交
1040
    if paddle.in_dynamic_mode():
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        return _C_ops.exponential_(x, "lambda", lam)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

    helper = LayerHelper("exponential", **locals())
    helper.append_op(
        type='exponential',
        inputs={"X": x},
        outputs={'Out': x},
        attrs={"lambda": lam})
    return x