random.py 29.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

C
cc 已提交
17
from ..fluid import core
18
from ..fluid.framework import in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
C
cc 已提交
19
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
S
silingtong123 已提交
23

24
__all__ = [
L
Leo Chen 已提交
25
    'bernoulli',
P
pangyoki 已提交
26
    'multinomial',
27 28
    'standard_normal',
    'normal',
P
pangyoki 已提交
29
    'uniform',
30 31 32
    'randn',
    'rand',
    'randint',
33
    'randperm',
34
]
S
silingtong123 已提交
35 36


L
Leo Chen 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

60
            import paddle
L
Leo Chen 已提交
61

C
cnn 已提交
62
            paddle.seed(100) # on CPU device
63 64 65 66
            x = paddle.rand([2,3])
            print(x.numpy())
            # [[0.5535528  0.20714243 0.01162981]
            # [0.51577556 0.36369765 0.2609165 ]]
L
Leo Chen 已提交
67

C
cnn 已提交
68
            paddle.seed(200) # on CPU device
69 70 71 72
            out = paddle.bernoulli(x)
            print(out.numpy())
            # [[0. 0. 0.]
            # [1. 1. 0.]]
L
Leo Chen 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

    """

    if in_dygraph_mode():
        return core.ops.bernoulli(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
    return out


P
pangyoki 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a Multinomical
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

111 112
            import paddle

C
cnn 已提交
113
            paddle.seed(100) # on CPU device
114 115 116 117 118
            x = paddle.rand([2,4])
            print(x.numpy())
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
119
            paddle.seed(200) # on CPU device
120 121 122 123 124 125 126 127 128
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
            print(out1.numpy())
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
129
            paddle.seed(300) # on CPU device
130 131 132 133
            out3 = paddle.multinomial(x, num_samples=3)
            print(out3.numpy())
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

    """

    if in_dygraph_mode():
        return core.ops.multinomial(x, 'num_samples', num_samples,
                                    'replacement', replacement)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
    helper.append_op(
        type='multinomial',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={'num_samples': num_samples,
               'replacement': replacement})
    return out


155
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
156 157 158 159 160
    """
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.

    Args:
161
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
162 163 164 165
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
166 167
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
168
            is 1.0.
169 170
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
171 172 173
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
174
        name (str, optional): The default value is None. Normally there is no
175 176 177 178 179 180 181
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
182 183 184
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

185 186 187 188
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
189 190
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
191 192 193 194
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
195
        shape = utils.convert_shape_to_list(shape)
196 197 198 199 200
        return core.ops.gaussian_random('shape', shape, 'mean',
                                        float(mean), 'std',
                                        float(std), 'seed', seed, 'dtype',
                                        dtype)

201
    check_shape(shape, op_type_for_check)
202 203 204 205 206 207 208 209 210 211
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
212
    utils.get_shape_tensor_inputs(
213 214
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

215
    helper = LayerHelper('gaussian', **locals())
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
233
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
234 235 236 237
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
238
        dtype (str|np.dtype, optional): The data type of the output Tensor.
239 240 241
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
242 243 244 245 246 247 248 249 250 251 252 253 254 255
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
256
            out1 = paddle.standard_normal(shape=[2, 3])
257 258 259 260
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
261 262
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
263
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
264 265 266 267 268 269 270 271
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
272
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
273
            out3 = paddle.standard_normal(shape_tensor)
274 275 276 277
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
278
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
279 280


Z
zhupengyang 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
def randn(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

377
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
378 379 380
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

381
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
    if not in_dygraph_mode():
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
400
            check_shape(shape, 'normal')
401 402 403 404 405 406 407 408 409 410 411 412 413 414

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
415
        return gaussian(shape=shape, mean=mean, std=std, name=name)
416 417 418 419 420 421 422

    out = out * std + mean
    if not in_dygraph_mode():
        out.stop_grediant = True
    return out


423
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
424 425 426 427 428
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
429

Z
zhupengyang 已提交
430
    .. code-block:: text
李灿 已提交
431

P
pangyoki 已提交
432 433 434 435 436 437 438 439 440 441 442
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
443 444 445 446
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
474 475 476 477
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
478 479 480

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
481 482 483 484 485
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
486 487 488

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
489
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
490 491 492
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
493
    """
494 495 496 497
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
498 499
                "uniform/rand only supports [float32, float64], but the default dtype is {}".
                format(dtype))
500

P
pangyoki 已提交
501 502 503 504
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
505
        shape = utils.convert_shape_to_list(shape)
P
pangyoki 已提交
506 507 508 509
        return core.ops.uniform_random('shape', shape, 'min',
                                       float(min), 'max',
                                       float(max), 'seed', seed, 'dtype', dtype)

510 511
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
512 513 514

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
515
    utils.get_shape_tensor_inputs(
516
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
P
pangyoki 已提交
517

518
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
519 520 521 522 523 524 525
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
    return out


526
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
527
    """
528 529 530
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
531 532

    Args:
533
        low (int): The lower bound on the range of random values to generate.
534 535
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
536
        high (int, optional): The upper bound on the range of random values to
537 538
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
539
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
540 541 542 543
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
544
        dtype (str|np.dtype, optional): The data type of the
545 546
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
547
        name (str, optional): The default value is None.  Normally there is no
548 549
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
550 551

    Returns: 
552 553
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
554 555 556

    Examples:
        .. code-block:: python
557

558
            import paddle
559

560 561
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
562
            out1 = paddle.randint(low=-5, high=5, shape=[3])
563 564 565 566
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
567 568 569
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
570 571 572 573 574
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
575
            shape_tensor = paddle.to_tensor(3)
Z
zhupengyang 已提交
576
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
577 578 579 580
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
581
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
582 583 584 585 586
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
587
            out5 = paddle.randint(10)
588
            # [7]  # random
S
silingtong123 已提交
589

590 591
    """
    if high is None:
592 593 594 595
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
596 597
        high = low
        low = 0
S
silingtong123 已提交
598 599
    if dtype is None:
        dtype = 'int64'
600 601
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
602 603

    if in_dygraph_mode():
604
        shape = utils.convert_shape_to_list(shape)
605 606
        return core.ops.randint('shape', shape, 'low', low, 'high', high,
                                'seed', 0, 'dtype', dtype)
S
silingtong123 已提交
607

608
    check_shape(shape, 'randint')
609 610
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
611 612 613 614
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

615 616
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
617
    utils.get_shape_tensor_inputs(
618 619 620 621 622 623
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
silingtong123 已提交
624
    return out
C
cc 已提交
625 626


627
def randperm(n, dtype="int64", name=None):
C
cc 已提交
628
    """
629 630
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
631 632

    Args:
633 634
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
635 636
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
637
        name (str, optional): The default value is None. Normally there is no
638 639
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
640 641

    Returns:
642 643
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
644 645 646 647

    Examples:
        .. code-block:: python

648
            import paddle
C
cc 已提交
649

650
            out1 = paddle.randperm(5)
651
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
652

653
            out2 = paddle.randperm(7, 'int32')
654
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
655 656
 
    """
657 658 659 660 661
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
662 663 664

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
665 666
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
667 668

    helper = LayerHelper("randperm", **locals())
669 670 671 672
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
673
    out.stop_gradient = True
C
cc 已提交
674
    return out
X
Xing Wu 已提交
675 676


677
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
678
    """
679 680
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
681 682

    Args:
683
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
684 685 686 687
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
688
        dtype (str|np.dtype, optional): The data type of the output Tensor.
689 690 691
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
692
        name (str, optional): The default value is None. Normally there is no
693 694
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
695

X
Xing Wu 已提交
696
    Returns:
697 698
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
699 700 701 702

    Examples:
        .. code-block:: python

703
            import paddle
704

705
            # example 1: attr shape is a list which doesn't contain Tensor.
706
            out1 = paddle.rand(shape=[2, 3])
707 708 709 710
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
711 712
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
713
            out2 = paddle.rand(shape=[dim1, dim2, 2])
714 715 716 717 718 719 720 721
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
722
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
723
            out3 = paddle.rand(shape_tensor)
724 725
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
726 727

    """
728
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)