random.py 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

C
cc 已提交
17
from ..fluid import core
18
from ..fluid.framework import in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
C
cc 已提交
19
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
S
silingtong123 已提交
23

24 25
__all__ = []

S
silingtong123 已提交
26

L
Leo Chen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

50
            import paddle
L
Leo Chen 已提交
51

L
Leo Chen 已提交
52 53 54
            paddle.set_device('cpu')  # on CPU device
            paddle.seed(100) 

55
            x = paddle.rand([2,3])
L
Leo Chen 已提交
56 57 58
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
59

60
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
61 62 63
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76

    """

    if in_dygraph_mode():
        return core.ops.bernoulli(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
77
    out.stop_gradient = True
L
Leo Chen 已提交
78 79 80
    return out


P
pangyoki 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a Multinomical
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

103 104
            import paddle

C
cnn 已提交
105
            paddle.seed(100) # on CPU device
106
            x = paddle.rand([2,4])
107
            print(x)
108 109 110
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
111
            paddle.seed(200) # on CPU device
112
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
113
            print(out1)
114 115 116 117 118 119 120
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
121
            paddle.seed(300) # on CPU device
122
            out3 = paddle.multinomial(x, num_samples=3)
123
            print(out3)
124 125
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
126 127 128

    """

129 130 131
    assert core.is_compiled_with_rocm() == False, (
        "multinomial op is not supported on ROCM yet.")

P
pangyoki 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    if in_dygraph_mode():
        return core.ops.multinomial(x, 'num_samples', num_samples,
                                    'replacement', replacement)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
    helper.append_op(
        type='multinomial',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={'num_samples': num_samples,
               'replacement': replacement})
147
    out.stop_gradient = True
P
pangyoki 已提交
148 149 150
    return out


151
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
152 153 154 155 156
    """
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.

    Args:
157
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
158 159 160 161
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
162 163
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
164
            is 1.0.
165 166
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
167 168 169
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
170
        name (str, optional): The default value is None. Normally there is no
171 172 173 174 175 176 177
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
178 179 180
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

181 182 183 184
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
185 186
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
187 188 189 190
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
191
        shape = utils.convert_shape_to_list(shape)
192 193 194 195 196
        return core.ops.gaussian_random('shape', shape, 'mean',
                                        float(mean), 'std',
                                        float(std), 'seed', seed, 'dtype',
                                        dtype)

197
    check_shape(shape, op_type_for_check)
198 199 200 201 202 203 204 205 206 207
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
208
    utils.get_shape_tensor_inputs(
209 210
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

211
    helper = LayerHelper('gaussian', **locals())
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
229
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
230 231 232 233
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
234
        dtype (str|np.dtype, optional): The data type of the output Tensor.
235 236 237
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
238 239 240 241 242 243 244 245 246 247 248 249 250 251
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
252
            out1 = paddle.standard_normal(shape=[2, 3])
253 254 255 256
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
257 258
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
259
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
260 261 262 263 264 265 266 267
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
268
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
269
            out3 = paddle.standard_normal(shape_tensor)
270 271 272 273
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
274
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
275 276


Z
zhupengyang 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
def randn(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

373
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
374 375 376
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

377
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
    if not in_dygraph_mode():
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
396
            check_shape(shape, 'normal')
397 398 399 400 401 402 403 404 405 406 407 408 409 410

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
411
        return gaussian(shape=shape, mean=mean, std=std, name=name)
412 413 414 415 416 417 418

    out = out * std + mean
    if not in_dygraph_mode():
        out.stop_grediant = True
    return out


419
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
420 421 422 423 424
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
425

Z
zhupengyang 已提交
426
    .. code-block:: text
李灿 已提交
427

P
pangyoki 已提交
428 429 430 431 432 433 434 435 436 437 438
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
439 440 441 442
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
470 471 472 473
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
474 475 476

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
477 478 479 480 481
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
482 483 484

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
485
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
486 487 488
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
489
    """
490 491 492 493
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
494 495
                "uniform/rand only supports [float32, float64], but the default dtype is {}".
                format(dtype))
496

P
pangyoki 已提交
497 498 499 500
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
501
        shape = utils.convert_shape_to_list(shape)
P
pangyoki 已提交
502 503 504 505
        return core.ops.uniform_random('shape', shape, 'min',
                                       float(min), 'max',
                                       float(max), 'seed', seed, 'dtype', dtype)

506 507
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
508 509 510

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
511
    utils.get_shape_tensor_inputs(
512
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
P
pangyoki 已提交
513

514
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
515 516 517 518
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
519
    out.stop_gradient = True
P
pangyoki 已提交
520 521 522
    return out


523
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
524
    """
525 526 527
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
528 529

    Args:
530
        low (int): The lower bound on the range of random values to generate.
531 532
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
533
        high (int, optional): The upper bound on the range of random values to
534 535
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
536
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
537 538 539 540
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
541
        dtype (str|np.dtype, optional): The data type of the
542 543
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
544
        name (str, optional): The default value is None.  Normally there is no
545 546
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
547 548

    Returns: 
549 550
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
551 552 553

    Examples:
        .. code-block:: python
554

555
            import paddle
556

557 558
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
559
            out1 = paddle.randint(low=-5, high=5, shape=[3])
560 561 562 563
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
564 565 566
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
567 568 569 570 571
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
572
            shape_tensor = paddle.to_tensor(3)
Z
zhupengyang 已提交
573
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
574 575 576 577
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
578
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
579 580 581 582 583
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
584
            out5 = paddle.randint(10)
585
            # [7]  # random
S
silingtong123 已提交
586

587 588
    """
    if high is None:
589 590 591 592
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
593 594
        high = low
        low = 0
S
silingtong123 已提交
595 596
    if dtype is None:
        dtype = 'int64'
597 598
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
599 600

    if in_dygraph_mode():
601
        shape = utils.convert_shape_to_list(shape)
602 603
        return core.ops.randint('shape', shape, 'low', low, 'high', high,
                                'seed', 0, 'dtype', dtype)
S
silingtong123 已提交
604

605
    check_shape(shape, 'randint')
606 607
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
608 609 610 611
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

612 613
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
614
    utils.get_shape_tensor_inputs(
615 616 617 618 619 620
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
621
    out.stop_gradient = True
S
silingtong123 已提交
622
    return out
C
cc 已提交
623 624


625
def randperm(n, dtype="int64", name=None):
C
cc 已提交
626
    """
627 628
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
629 630

    Args:
631 632
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
633 634
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
635
        name (str, optional): The default value is None. Normally there is no
636 637
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
638 639

    Returns:
640 641
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
642 643 644 645

    Examples:
        .. code-block:: python

646
            import paddle
C
cc 已提交
647

648
            out1 = paddle.randperm(5)
649
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
650

651
            out2 = paddle.randperm(7, 'int32')
652
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
653 654
 
    """
655 656 657 658 659
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
660 661 662

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
663 664
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
665 666

    helper = LayerHelper("randperm", **locals())
667 668 669 670
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
671
    out.stop_gradient = True
C
cc 已提交
672
    return out
X
Xing Wu 已提交
673 674


675
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
676
    """
677 678
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
679 680

    Args:
681
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
682 683 684 685
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
686
        dtype (str|np.dtype, optional): The data type of the output Tensor.
687 688 689
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
690
        name (str, optional): The default value is None. Normally there is no
691 692
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
693

X
Xing Wu 已提交
694
    Returns:
695 696
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
697 698 699 700

    Examples:
        .. code-block:: python

701
            import paddle
702

703
            # example 1: attr shape is a list which doesn't contain Tensor.
704
            out1 = paddle.rand(shape=[2, 3])
705 706 707 708
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
709 710
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
711
            out2 = paddle.rand(shape=[dim1, dim2, 2])
712 713 714 715 716 717 718 719
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
720
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
721
            out3 = paddle.rand(shape_tensor)
722 723
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
724 725

    """
726
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)