random.py 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

G
guofei 已提交
17 18
import numpy as np

C
cc 已提交
19
from ..fluid import core
G
guofei 已提交
20
from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, Variable, convert_np_dtype_to_dtype_
C
cc 已提交
21 22 23
from ..fluid.layers.layer_function_generator import templatedoc
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
P
pangyoki 已提交
24
from ..fluid.layers import utils, gaussian_random
S
silingtong123 已提交
25 26
from ..fluid.layers.tensor import fill_constant

27 28 29
from ..fluid.io import shuffle  #DEFINE_ALIAS

__all__ = [
L
Leo Chen 已提交
30
    'bernoulli',
31
    #       'gaussin',
P
pangyoki 已提交
32
    'uniform',
33 34 35 36 37 38
    'shuffle',
    'randn',
    'rand',
    'randint',
    'randperm'
]
S
silingtong123 已提交
39 40


L
Leo Chen 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.rand([2, 3])
        print(x.numpy())
        # [[0.11272584 0.3890902  0.7730957 ]
        # [0.10351662 0.8510418  0.63806665]]

        out = paddle.bernoulli(x)
        print(out.numpy())
        # [[0. 0. 1.]
        # [0. 0. 1.]]

    """

    if in_dygraph_mode():
        return core.ops.bernoulli(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
    return out


P
pangyoki 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
def uniform(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
    ::

        Input:
          shape = [1, 2]

        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import numpy as np
            import paddle

            paddle.disable_static()

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
            result_1 = paddle.tensor.random.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]

            # example 2:
            # attr shape is a list which contains Tensor.
            dim_1 = paddle.fill_constant([1], "int64", 2)
            dim_2 = paddle.fill_constant([1], "int32", 3)
            result_2 = paddle.tensor.random.uniform(shape=[dim_1, dim_2])
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
            shape = np.array([2, 3])
            shape_tensor = paddle.to_tensor(shape)

            result_3 = paddle.tensor.random.uniform(shape_tensor)
            # if shape_tensor's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]

            paddle.enable_static()

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        shape = utils._convert_shape_to_list(shape)
        return core.ops.uniform_random('shape', shape, 'min',
                                       float(min), 'max',
                                       float(max), 'seed', seed, 'dtype', dtype)

    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random/rand')

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
    utils._get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand')

    helper = LayerHelper("uniform_random", **locals())
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
    return out


199
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
200
    """
201
	:alias_main: paddle.randint
202
	:alias: paddle.tensor.randint, paddle.tensor.random.randint
S
swtkiwi 已提交
203

204 205 206
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
207 208

    Args:
209 210 211 212 213 214 215 216 217 218 219 220 221 222
        low(int): The lower bound on the range of random values to generate.
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high(int, optional): The upper bound on the range of random values to
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
223 224 225
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
226 227

    Returns: 
228 229
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
230 231

    Raises:
232 233 234 235
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not int32, int64.
        ValueError: If ``high`` is not greater then ``low``; If ``high`` is 
            None, and ``low`` is not greater than 0.
S
silingtong123 已提交
236 237 238

    Examples:
        .. code-block:: python
239

240 241 242
        import paddle
        import numpy as np

243
        paddle.disable_static()
244 245

        # example 1:
246
        # attr shape is a list which doesn't contain Tensor.
247
        result_1 = paddle.randint(low=-5, high=5, shape=[3])
248
        # [0, -3, 2]
249 250

        # example 2:
251 252 253
        # attr shape is a list which contains Tensor.
        dim_1 = paddle.fill_constant([1], "int64", 2)
        dim_2 = paddle.fill_constant([1], "int32", 3)
254
        result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32")
255 256
        # [[0, -1, -3],
        #  [4, -2,  0]]
257 258

        # example 3:
259
        # attr shape is a Tensor
260
        var_shape = paddle.to_variable(np.array([3]))
261
        result_3 = paddle.randint(low=-5, high=5, shape=var_shape)
262
        # [-2, 2, 3]
263 264 265 266

        # example 4:
        # data type is int32
        result_4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
267
        # [-5, 4, -4]
268 269 270 271 272 273

        # example 5:
        # Input only one parameter
        # low=0, high=10, shape=[1], dtype='int64'
        result_5 = paddle.randint(10)
        # [7]
S
silingtong123 已提交
274

275 276
    """
    if high is None:
277 278 279 280
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
281 282
        high = low
        low = 0
S
silingtong123 已提交
283 284
    if dtype is None:
        dtype = 'int64'
285 286
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
287 288

    if in_dygraph_mode():
289 290 291
        shape = utils._convert_shape_to_list(shape)
        return core.ops.randint('shape', shape, 'low', low, 'high', high,
                                'seed', 0, 'dtype', dtype)
S
silingtong123 已提交
292

293 294 295
    check_type(shape, 'shape', (list, tuple, Variable), 'randint')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
296 297 298 299
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

300 301 302 303 304 305 306 307 308
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
    utils._get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
silingtong123 已提交
309
    return out
C
cc 已提交
310 311


312
def randn(shape, dtype=None, name=None):
G
guofei 已提交
313
    """
314
	:alias_main: paddle.randn
315
	:alias: paddle.tensor.randn, paddle.tensor.random.randn
S
swtkiwi 已提交
316

317 318 319
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with mean 0 and standard deviation 1 (also called the standard
    normal distribution), with ``shape`` and ``dtype``.
G
guofei 已提交
320 321

    Args:
322 323 324 325 326 327 328 329 330 331 332
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: float32, float64. If ``dytpe``
            is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
G
guofei 已提交
333 334

    Returns:
335 336 337
        Tensor: A Tensor filled with random values sampled from a normal
        distribution with mean 0 and standard deviation 1 (also called the
        standard normal distribution), with ``shape`` and ``dtype``.
G
guofei 已提交
338 339

    Raises:
340 341
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.
G
guofei 已提交
342 343 344 345

    Examples:
        .. code-block:: python

346 347
        import paddle
        import numpy as np
G
guofei 已提交
348

349
        paddle.disable_static()
G
guofei 已提交
350

351
        # example 1: attr shape is a list which doesn't contain Tensor.
352
        result_1 = paddle.randn(shape=[2, 3])
353 354
        # [[-2.923464  ,  0.11934398, -0.51249987],
        #  [ 0.39632758,  0.08177969,  0.2692008 ]]
G
guofei 已提交
355

356
        # example 2: attr shape is a list which contains Tensor.
357 358 359
        dim_1 = paddle.fill_constant([1], "int64", 2)
        dim_2 = paddle.fill_constant([1], "int32", 3)
        result_2 = paddle.randn(shape=[dim_1, dim_2, 2])
360 361 362 363 364 365 366 367
        # [[[-2.8852394 , -0.25898588],
        #   [-0.47420555,  0.17683524],
        #   [-0.7989969 ,  0.00754541]],
        #  [[ 0.85201347,  0.32320443],
        #   [ 1.1399018 ,  0.48336947],
        #   [ 0.8086993 ,  0.6868893 ]]]

        # example 3: attr shape is a Tensor, the data type must be int64 or int32.
368
        var_shape = paddle.to_variable(np.array([2, 3]))
369
        result_3 = paddle.randn(var_shape)
370 371
        # [[-2.878077 ,  0.17099959,  0.05111201]
        #  [-0.3761474, -1.044801  ,  1.1870178 ]]
G
guofei 已提交
372

373
    """
G
guofei 已提交
374 375 376
    if dtype is None:
        dtype = 'float32'

377 378 379
    out = gaussian_random(
        shape=shape, mean=0.0, std=1.0, seed=0, dtype=dtype, name=name)
    out.stop_gradient = True
G
guofei 已提交
380 381 382
    return out


C
cc 已提交
383
@templatedoc()
384
def randperm(n, dtype="int64", name=None):
C
cc 已提交
385
    """
386
	:alias_main: paddle.randperm
387
	:alias: paddle.tensor.randperm, paddle.tensor.random.randperm
S
swtkiwi 已提交
388

389 390
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
391 392

    Args:
393
        n(int): The upper bound (exclusive), and it should be greater than 0.
394 395 396 397 398 399
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
400 401

    Returns:
402 403
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
404

405 406 407
    Raises:
        ValueError: If ``n`` is not greater than 0.
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
C
cc 已提交
408 409 410 411

    Examples:
        .. code-block:: python

412
        import paddle
C
cc 已提交
413

414
        paddle.disable_static()
C
cc 已提交
415

416
        result_1 = paddle.randperm(5)
417
        # [4, 1, 2, 3, 0]
C
cc 已提交
418

419
        result_2 = paddle.randperm(7, 'int32')
420
        # [1, 6, 2, 0, 4, 3, 5]
C
cc 已提交
421 422
 
    """
423 424 425 426 427
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
428 429 430

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
431 432
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
433 434

    helper = LayerHelper("randperm", **locals())
435 436 437 438
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
439
    out.stop_gradient = True
C
cc 已提交
440
    return out
X
Xing Wu 已提交
441 442


443
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
444
    """
445
	:alias_main: paddle.rand
446
	:alias: paddle.tensor.rand, paddle.tensor.random.rand
S
swtkiwi 已提交
447

448 449
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
450 451 452 453 454 455 456 457 458 459 460

    Examples:
    ::

        Input:
          shape = [1, 2]

        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
461 462 463 464 465 466 467 468
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: float32, float64. If ``dytpe``
            is None, the data type is float32. Default is None.
469 470 471
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
472

X
Xing Wu 已提交
473
    Returns:
474 475
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
476 477

    Raises:
478 479
        TypeError: If ``shape`` is not list, tuple, Tensor.
        ValueError: If ``dtype`` is not float32, float64.
X
Xing Wu 已提交
480 481 482 483

    Examples:
        .. code-block:: python

484 485 486
        import paddle
        import numpy as np

487
        paddle.disable_static()
488
        # example 1: attr shape is a list which doesn't contain Tensor.
489 490 491 492
        result_1 = paddle.rand(shape=[2, 3])
        # [[0.451152  , 0.55825245, 0.403311  ],
        #  [0.22550228, 0.22106001, 0.7877319 ]]

493
        # example 2: attr shape is a list which contains Tensor.
494 495 496
        dim_1 = paddle.fill_constant([1], "int64", 2)
        dim_2 = paddle.fill_constant([1], "int32", 3)
        result_2 = paddle.rand(shape=[dim_1, dim_2, 2])
497 498 499 500 501 502 503 504
        # [[[0.8879919 , 0.25788337],
        #   [0.28826773, 0.9712097 ],
        #   [0.26438272, 0.01796806]],
        #  [[0.33633623, 0.28654453],
        #   [0.79109055, 0.7305809 ],
        #   [0.870881  , 0.2984597 ]]]

        # example 3: attr shape is a Tensor, the data type must be int64 or int32.
505
        var_shape = paddle.to_variable(np.array([2, 3]))
506
        result_3 = paddle.rand(var_shape)
507 508
        # [[0.22920267, 0.841956  , 0.05981819],
        #  [0.4836288 , 0.24573246, 0.7516129 ]]
X
Xing Wu 已提交
509 510 511 512

    """
    if dtype is None:
        dtype = 'float32'
513

P
pangyoki 已提交
514
    out = uniform(shape, dtype, min=0.0, max=1.0, name=name)
515 516
    out.stop_gradient = True
    return out