random.py 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

G
guofei 已提交
17 18
import numpy as np

C
cc 已提交
19
from ..fluid import core
G
guofei 已提交
20
from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, Variable, convert_np_dtype_to_dtype_
C
cc 已提交
21 22 23
from ..fluid.layers.layer_function_generator import templatedoc
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
P
pangyoki 已提交
24
from ..fluid.layers import utils, gaussian_random
S
silingtong123 已提交
25 26
from ..fluid.layers.tensor import fill_constant

27 28 29 30
from ..fluid.io import shuffle  #DEFINE_ALIAS

__all__ = [
    #       'gaussin',
P
pangyoki 已提交
31
    'uniform',
32 33 34 35 36 37
    'shuffle',
    'randn',
    'rand',
    'randint',
    'randperm'
]
S
silingtong123 已提交
38 39


P
pangyoki 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
def uniform(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
    ::

        Input:
          shape = [1, 2]

        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import numpy as np
            import paddle

            paddle.disable_static()

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
            result_1 = paddle.tensor.random.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]

            # example 2:
            # attr shape is a list which contains Tensor.
            dim_1 = paddle.fill_constant([1], "int64", 2)
            dim_2 = paddle.fill_constant([1], "int32", 3)
            result_2 = paddle.tensor.random.uniform(shape=[dim_1, dim_2])
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
            shape = np.array([2, 3])
            shape_tensor = paddle.to_tensor(shape)

            result_3 = paddle.tensor.random.uniform(shape_tensor)
            # if shape_tensor's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]

            paddle.enable_static()

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        shape = utils._convert_shape_to_list(shape)
        return core.ops.uniform_random('shape', shape, 'min',
                                       float(min), 'max',
                                       float(max), 'seed', seed, 'dtype', dtype)

    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random/rand')

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
    utils._get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand')

    helper = LayerHelper("uniform_random", **locals())
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
    return out


145
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
146
    """
147
	:alias_main: paddle.randint
148
	:alias: paddle.tensor.randint, paddle.tensor.random.randint
S
swtkiwi 已提交
149

150 151 152
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
153 154

    Args:
155 156 157 158 159 160 161 162 163 164 165 166 167 168
        low(int): The lower bound on the range of random values to generate.
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high(int, optional): The upper bound on the range of random values to
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
169 170 171
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
172 173

    Returns: 
174 175
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
176 177

    Raises:
178 179 180 181
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not int32, int64.
        ValueError: If ``high`` is not greater then ``low``; If ``high`` is 
            None, and ``low`` is not greater than 0.
S
silingtong123 已提交
182 183 184

    Examples:
        .. code-block:: python
185

186 187 188
        import paddle
        import numpy as np

189
        paddle.disable_static()
190 191

        # example 1:
192
        # attr shape is a list which doesn't contain Tensor.
193
        result_1 = paddle.randint(low=-5, high=5, shape=[3])
194
        # [0, -3, 2]
195 196

        # example 2:
197 198 199
        # attr shape is a list which contains Tensor.
        dim_1 = paddle.fill_constant([1], "int64", 2)
        dim_2 = paddle.fill_constant([1], "int32", 3)
200
        result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32")
201 202
        # [[0, -1, -3],
        #  [4, -2,  0]]
203 204

        # example 3:
205
        # attr shape is a Tensor
206
        var_shape = paddle.to_variable(np.array([3]))
207
        result_3 = paddle.randint(low=-5, high=5, shape=var_shape)
208
        # [-2, 2, 3]
209 210 211 212

        # example 4:
        # data type is int32
        result_4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
213
        # [-5, 4, -4]
214 215 216 217 218 219

        # example 5:
        # Input only one parameter
        # low=0, high=10, shape=[1], dtype='int64'
        result_5 = paddle.randint(10)
        # [7]
S
silingtong123 已提交
220

221 222
    """
    if high is None:
223 224 225 226
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
227 228
        high = low
        low = 0
S
silingtong123 已提交
229 230
    if dtype is None:
        dtype = 'int64'
231 232
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
233 234

    if in_dygraph_mode():
235 236 237
        shape = utils._convert_shape_to_list(shape)
        return core.ops.randint('shape', shape, 'low', low, 'high', high,
                                'seed', 0, 'dtype', dtype)
S
silingtong123 已提交
238

239 240 241
    check_type(shape, 'shape', (list, tuple, Variable), 'randint')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
242 243 244 245
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

246 247 248 249 250 251 252 253 254
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
    utils._get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
silingtong123 已提交
255
    return out
C
cc 已提交
256 257


258
def randn(shape, dtype=None, name=None):
G
guofei 已提交
259
    """
260
	:alias_main: paddle.randn
261
	:alias: paddle.tensor.randn, paddle.tensor.random.randn
S
swtkiwi 已提交
262

263 264 265
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with mean 0 and standard deviation 1 (also called the standard
    normal distribution), with ``shape`` and ``dtype``.
G
guofei 已提交
266 267

    Args:
268 269 270 271 272 273 274 275 276 277 278
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: float32, float64. If ``dytpe``
            is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
G
guofei 已提交
279 280

    Returns:
281 282 283
        Tensor: A Tensor filled with random values sampled from a normal
        distribution with mean 0 and standard deviation 1 (also called the
        standard normal distribution), with ``shape`` and ``dtype``.
G
guofei 已提交
284 285

    Raises:
286 287
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.
G
guofei 已提交
288 289 290 291

    Examples:
        .. code-block:: python

292 293
        import paddle
        import numpy as np
G
guofei 已提交
294

295
        paddle.disable_static()
G
guofei 已提交
296

297
        # example 1: attr shape is a list which doesn't contain Tensor.
298
        result_1 = paddle.randn(shape=[2, 3])
299 300
        # [[-2.923464  ,  0.11934398, -0.51249987],
        #  [ 0.39632758,  0.08177969,  0.2692008 ]]
G
guofei 已提交
301

302
        # example 2: attr shape is a list which contains Tensor.
303 304 305
        dim_1 = paddle.fill_constant([1], "int64", 2)
        dim_2 = paddle.fill_constant([1], "int32", 3)
        result_2 = paddle.randn(shape=[dim_1, dim_2, 2])
306 307 308 309 310 311 312 313
        # [[[-2.8852394 , -0.25898588],
        #   [-0.47420555,  0.17683524],
        #   [-0.7989969 ,  0.00754541]],
        #  [[ 0.85201347,  0.32320443],
        #   [ 1.1399018 ,  0.48336947],
        #   [ 0.8086993 ,  0.6868893 ]]]

        # example 3: attr shape is a Tensor, the data type must be int64 or int32.
314
        var_shape = paddle.to_variable(np.array([2, 3]))
315
        result_3 = paddle.randn(var_shape)
316 317
        # [[-2.878077 ,  0.17099959,  0.05111201]
        #  [-0.3761474, -1.044801  ,  1.1870178 ]]
G
guofei 已提交
318

319
    """
G
guofei 已提交
320 321 322
    if dtype is None:
        dtype = 'float32'

323 324 325
    out = gaussian_random(
        shape=shape, mean=0.0, std=1.0, seed=0, dtype=dtype, name=name)
    out.stop_gradient = True
G
guofei 已提交
326 327 328
    return out


C
cc 已提交
329
@templatedoc()
330
def randperm(n, dtype="int64", name=None):
C
cc 已提交
331
    """
332
	:alias_main: paddle.randperm
333
	:alias: paddle.tensor.randperm, paddle.tensor.random.randperm
S
swtkiwi 已提交
334

335 336
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
337 338

    Args:
339
        n(int): The upper bound (exclusive), and it should be greater than 0.
340 341 342 343 344 345
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
346 347

    Returns:
348 349
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
350

351 352 353
    Raises:
        ValueError: If ``n`` is not greater than 0.
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
C
cc 已提交
354 355 356 357

    Examples:
        .. code-block:: python

358
        import paddle
C
cc 已提交
359

360
        paddle.disable_static()
C
cc 已提交
361

362
        result_1 = paddle.randperm(5)
363
        # [4, 1, 2, 3, 0]
C
cc 已提交
364

365
        result_2 = paddle.randperm(7, 'int32')
366
        # [1, 6, 2, 0, 4, 3, 5]
C
cc 已提交
367 368
 
    """
369 370 371 372 373
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
374 375 376

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
377 378
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
379 380

    helper = LayerHelper("randperm", **locals())
381 382 383 384
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
385
    out.stop_gradient = True
C
cc 已提交
386
    return out
X
Xing Wu 已提交
387 388


389
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
390
    """
391
	:alias_main: paddle.rand
392
	:alias: paddle.tensor.rand, paddle.tensor.random.rand
S
swtkiwi 已提交
393

394 395
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
396 397 398 399 400 401 402 403 404 405 406

    Examples:
    ::

        Input:
          shape = [1, 2]

        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
407 408 409 410 411 412 413 414
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: float32, float64. If ``dytpe``
            is None, the data type is float32. Default is None.
415 416 417
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
418

X
Xing Wu 已提交
419
    Returns:
420 421
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
422 423

    Raises:
424 425
        TypeError: If ``shape`` is not list, tuple, Tensor.
        ValueError: If ``dtype`` is not float32, float64.
X
Xing Wu 已提交
426 427 428 429

    Examples:
        .. code-block:: python

430 431 432
        import paddle
        import numpy as np

433
        paddle.disable_static()
434
        # example 1: attr shape is a list which doesn't contain Tensor.
435 436 437 438
        result_1 = paddle.rand(shape=[2, 3])
        # [[0.451152  , 0.55825245, 0.403311  ],
        #  [0.22550228, 0.22106001, 0.7877319 ]]

439
        # example 2: attr shape is a list which contains Tensor.
440 441 442
        dim_1 = paddle.fill_constant([1], "int64", 2)
        dim_2 = paddle.fill_constant([1], "int32", 3)
        result_2 = paddle.rand(shape=[dim_1, dim_2, 2])
443 444 445 446 447 448 449 450
        # [[[0.8879919 , 0.25788337],
        #   [0.28826773, 0.9712097 ],
        #   [0.26438272, 0.01796806]],
        #  [[0.33633623, 0.28654453],
        #   [0.79109055, 0.7305809 ],
        #   [0.870881  , 0.2984597 ]]]

        # example 3: attr shape is a Tensor, the data type must be int64 or int32.
451
        var_shape = paddle.to_variable(np.array([2, 3]))
452
        result_3 = paddle.rand(var_shape)
453 454
        # [[0.22920267, 0.841956  , 0.05981819],
        #  [0.4836288 , 0.24573246, 0.7516129 ]]
X
Xing Wu 已提交
455 456 457 458

    """
    if dtype is None:
        dtype = 'float32'
459

P
pangyoki 已提交
460
    out = uniform(shape, dtype, min=0.0, max=1.0, name=name)
461 462
    out.stop_gradient = True
    return out