build_cinn_pass.cc 24.4 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19
#include <memory>
20
#include <regex>
J
jiangcheng 已提交
21 22 23
#include <string>
#include <unordered_map>
#include <unordered_set>
24
#include <utility>
J
jiangcheng 已提交
25 26
#include <vector>

27 28
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
29 30
#include "gflags/gflags.h"
#include "glog/logging.h"
J
jiangcheng 已提交
31
#include "paddle/fluid/framework/ir/graph.h"
32
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
33 34
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_proto_maker.h"
37
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
38
#include "paddle/fluid/operators/cinn/cinn_launch_op.h"
39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
41

42 43 44
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

J
jiangcheng 已提交
45 46 47 48 49 50 51 52
namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
53
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
54

55 56
std::unordered_set<std::string> OpTransInfo::GetDenyVarNames(
    const GraphNodeSet& cluster) const {
57 58 59 60 61 62 63 64 65 66 67 68 69
  std::unordered_set<std::string> deny_var_set;

  auto get_debug_info = [](const std::unordered_set<std::string>& var_names) {
    std::string debug_info = "[";
    for (auto& var : var_names) {
      debug_info.append(var);
      debug_info.append(", ");
    }
    debug_info.append("]");
    return debug_info;
  };

  for (auto* op : cluster) {
70
    if (deny_param_cond.count(op->Name())) {
71
      const auto* desc = op->Op();
72 73
      PADDLE_ENFORCE_NE(desc,
                        nullptr,
74 75
                        platform::errors::PreconditionNotMet(
                            "The Op %s's OpDesc should not be NULL, which has "
76
                            "a parameter in deny_param_cond.",
77 78
                            op->Name().c_str()));

79
      auto deny_param_names = deny_param_cond.at(op->Name());
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
      VLOG(4) << "We found deny param " << get_debug_info(deny_param_names)
              << " in op [" << op->Name() << "].";

      for (const auto& param_name : deny_param_names) {
        if (desc->Inputs().count(param_name)) {
          const auto& arg_names = desc->Input(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }

        if (desc->HasOutput(param_name)) {
          const auto& arg_names = desc->Output(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }
      }
    }
  }

  VLOG(4) << "All deny var names are " << get_debug_info(deny_var_set);

  return deny_var_set;
}

110 111 112 113 114
namespace {
// The delim(`;`) that is used to split the FLAGS_allow_cinn_ops
// & FLAGS_deny_cinn_ops.
constexpr char kDelim[] = ";";

115 116 117 118 119 120 121 122 123 124
std::unordered_set<std::string> StringSplit(const std::string& str,
                                            const std::string& delim) {
  std::regex reg(delim);
  std::unordered_set<std::string> elems{
      std::sregex_token_iterator(str.begin(), str.end(), reg, -1),
      std::sregex_token_iterator()};
  elems.erase("");
  return elems;
}

125 126 127 128 129
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
R
Ruibiao Chen 已提交
130
      op_roles.insert(PADDLE_GET_CONST(int, n->Op()->GetAttr(attr_name)));
131 132 133 134 135 136 137 138 139
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

140
// Deal with input var nodes of the target subgraph:
141
// create a new input var node and it's feed op node
142
void AddFeedOpAndVar(const GraphNodeSet& input_vars,
143
                     const GraphNodeSet& cluster,
144
                     const GraphNodeMap& old_op2new_op,
145 146
                     const GraphNodeMap& old_var2new_var,
                     Graph* graph) {
147
  for (auto* old_var : input_vars) {
148 149 150 151 152 153
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

154 155
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
156
    VLOG(4) << "Add Feed Op before the input var: " << var->Name();
157 158

    // link feed op and feed var
159
    IR_NODE_LINK_TO(op, var);
160 161 162 163

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
164
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
165 166
      }
      // Do not need relink old op or old var here, they will be
167
      // fixed in RemoveSubGraphFromGraph, here we just deal with
168 169 170 171 172 173 174
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
175 176
void AddOutputVar(const GraphNodeSet& output_vars,
                  const GraphNodeSet& cluster,
177
                  const GraphNodeMap& old_op2new_op,
178 179
                  const GraphNodeMap& old_var2new_var,
                  Graph* graph) {
180
  for (auto* old_var : output_vars) {
181 182 183 184 185 186
    // create fetch op
    OpDesc desc;
    desc.SetType("fetch");
    desc.SetInput("X", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

187
    auto* var = old_var2new_var.at(old_var);
188
    VLOG(4) << "Add Output Var Node: " << var->Name();
189

190 191 192
    // link fetch op and fetch var
    IR_NODE_LINK_TO(var, op);

193 194
    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
195
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
196 197 198 199 200
      }
    }
  }
}

201 202 203 204 205
std::unordered_set<std::string> ExtractNoNeedBufferFeeds(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs) {
  // 1. Find op with NoNeedBufferVarsInferer defined and collect its input nodes
  std::unordered_map<Node*, GraphNodeSet> op_node2no_need_buffer_nodes;
  for (auto* op_node : cluster) {
206 207 208 209 210 211
    const auto* op = OpInfoMap::Instance().GetNullable(op_node->Name());
    // If op not registered in Paddle, skip
    if (!op) {
      continue;
    }
    auto& inferer = op->NoNeedBufferVarsInferer();
212 213 214 215 216
    if (!inferer) {
      continue;
    }
    auto* op_desc = op_node->Op();
    PADDLE_ENFORCE_NOT_NULL(
217 218 219
        op_desc,
        platform::errors::PreconditionNotMet(
            "The op desc of node in cluster shouldn't be null."));
220 221 222
    auto inferred_params =
        inferer(op_desc->Inputs(), op_desc->Inputs(), op_desc->GetAttrMap());
    std::unordered_set<std::string> inferred_args;
223 224
    std::for_each(inferred_params.begin(),
                  inferred_params.end(),
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                  [&op_desc, &inferred_args](const std::string& param) {
                    const auto& args = op_desc->Input(param);
                    inferred_args.insert(args.begin(), args.end());
                  });
    auto& no_need_buffer_nodes = op_node2no_need_buffer_nodes[op_node];
    for (auto* input_node : op_node->inputs) {
      if (input_node->Var() && inferred_args.count(input_node->Name())) {
        VLOG(4) << "Input node(" << input_node->Name() << ") of op("
                << op_node->Name() << ") is no_need_buffer";
        no_need_buffer_nodes.insert(input_node);
      }
    }
  }

  // 2. Extract no_need_buffer nodes from cluster_inputs by checking
  // all of their outputs are op nodes with NoNeedBufferVarsInferer
  // and they used as no_need_buffer inputs.
  auto check_all_used_as_no_need_buffer_fn =
      [&op_node2no_need_buffer_nodes](Node* var_node) -> bool {
    for (auto* output_node : var_node->outputs) {
      auto it = op_node2no_need_buffer_nodes.find(output_node);
      if (it == op_node2no_need_buffer_nodes.end()) {
        VLOG(4) << "Var node(" << var_node->Name() << ")'s output node("
                << output_node->Name()
                << ") doesn't have NoNeedBufferVarsInferer";
        return false;
      }
      if (it->second.count(var_node) == 0) {
        VLOG(4) << "Var node("
                << ") is not used as no_need_buffer inputs";
        return false;
      }
    }
    return true;
  };
  std::unordered_set<std::string> result;
  for (const auto& op2inputs_pair : op_node2no_need_buffer_nodes) {
    for (auto* input_node : op2inputs_pair.second) {
      if (cluster_inputs.count(input_node) &&
          check_all_used_as_no_need_buffer_fn(input_node)) {
        VLOG(4) << "Input node(" << input_node->Name()
                << ") is declared as no_need_buffer cluster_inputs";
        result.insert(input_node->Name());
      }
    }
  }
  return result;
}

J
jiangcheng 已提交
274 275
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
276 277
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
278 279
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
280 281
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
282
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
283

284
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
285
  for (auto* op : cluster) {
286
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
287 288 289
    old_op2new_op[op] = sub_node;
  }

290
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
291
  for (auto* var : cluster_internals) {
292 293 294 295 296 297 298 299 300 301 302 303 304
    if (!var->Var()) {
      // skip control var

      // TODO(jiangcheng05): CINN not support control var now, so here we skip
      // it, but it may incur result incorrect problem. In detail, for two
      // unconnected ops, with control var, an op must run before another op.
      // If we remove the control var, the program wouldn't guarantee the run
      // ordering, in other words, the result may incorrect.
      VLOG(4)
          << "The internal var [" << var->Name() << "]'s vardesc empty,"
          << " it may be a control var, but CINN not support control var now.";
      continue;
    }
305
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
306 307
    old_var2new_var[var] = sub_node;
  }
308 309 310 311 312 313 314 315 316 317 318 319
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
320

321
  GraphNodeSet need_feed_vars;
322
  std::unordered_set<Node*> param_vars, output_vars;
J
jiangcheng 已提交
323 324 325 326 327
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
328 329 330 331
      if (!var->Var()) {
        // skip control var
        continue;
      }
332 333 334 335
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
336
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
337 338 339 340 341 342 343 344 345 346 347
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
348 349 350
      }
    }
    for (auto* var : op->outputs) {
351 352 353 354
      if (!var->Var()) {
        // skip control var
        continue;
      }
J
jiangcheng 已提交
355
      if (cluster_internals.count(var)) {
356
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
357
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
358 359 360 361
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
362 363 364 365
      }
    }
  }

366 367
  AddFeedOpAndVar(
      need_feed_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
368
  AddFeedOpAndVar(
369 370 371
      param_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
  AddOutputVar(
      output_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
372 373
  // Save lists of input variables, internal variables and output variables
  // of the cluster as attributes of the subgraph for convenience.
374 375 376 377 378 379 380 381 382 383 384 385
  auto collect_names_fn =
      [](const GraphNodeSet& nodes,
         const std::unordered_set<std::string>& ignore_names) {
        auto result = std::make_unique<std::vector<std::string>>();
        for (auto* node : nodes) {
          if (!node->Var() || ignore_names.count(node->Name())) {
            continue;
          }
          result->emplace_back(node->Name());
        }
        return result;
      };
386 387 388 389 390 391 392
  subgraph->Set<std::vector<std::string>>(
      kInternalVars, collect_names_fn(cluster_internals, {}).release());
  subgraph->Set<std::vector<std::string>>(
      kOutputVars, collect_names_fn(cluster_outputs, {}).release());
  // Divide input variables into two parts: one is common and will be used
  // in execution, the other may be empty and it is those variables whose
  // buffer are not needed and only be used in graph symbolization
393 394
  auto no_need_buffer_feeds = std::make_unique<std::unordered_set<std::string>>(
      ExtractNoNeedBufferFeeds(cluster, cluster_inputs));
395 396 397
  subgraph->Set<std::vector<std::string>>(
      kInputVars,
      collect_names_fn(cluster_inputs, *no_need_buffer_feeds).release());
398 399
  subgraph->Set<std::unordered_set<std::string>>(
      kNoNeedBufferFeeds, no_need_buffer_feeds.release());
400 401
  // initialize empty map for kMemOptVarInfoFromMainGraph attribute,
  // it will be filled on the share_mem_opt_info_to_subgraph pass
402
  subgraph->GetOrInit<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph);
403
  return subgraph;
J
jiangcheng 已提交
404 405 406 407
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
408 409 410
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
411
// out-graph should not using this node at all.
412 413
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
414 415 416
void AnalyseClusterVariables(
    const GraphNodeSet& cluster,
    const std::unordered_set<std::string>& deny_var_set,
417 418
    GraphNodeSet* cluster_inputs,
    GraphNodeSet* cluster_outputs,
419
    GraphNodeSet* cluster_internals) {
J
jiangcheng 已提交
420 421
  // collecting all input and output of op
  for (auto* op_node : cluster) {
422
    const auto& op_name = op_node->Name();
J
jiangcheng 已提交
423
    for (auto* input_var_node : op_node->inputs) {
424 425 426 427
      if (!deny_var_set.count(input_var_node->Name())) {
        // ignore deny var node
        cluster_inputs->insert(input_var_node);
      }
J
jiangcheng 已提交
428 429
    }
    for (auto* output_var_node : op_node->outputs) {
430 431 432
      if (!deny_var_set.count(output_var_node->Name())) {
        cluster_outputs->insert(output_var_node);
      }
J
jiangcheng 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

460
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
461 462
                     const GraphNodeSet& cluster_outputs,
                     Node* cinn_op_node) {
463 464 465 466 467 468 469 470 471 472 473 474 475 476
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
477
                      int64_t compilation_key,
478 479
                      const std::unordered_set<std::string>& deny_var_set,
                      Graph* graph) {
480 481 482
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
483

484 485
  const auto& subgraph =
      CinnCompiler::GetInstance()->FindGraph(compilation_key);
486
  const auto& no_need_buffer_feeds =
487 488
      subgraph.Get<std::unordered_set<std::string>>(kNoNeedBufferFeeds);

489 490 491 492 493 494 495
  cinn_op_desc.SetInput(operators::kX,
                        subgraph.Get<std::vector<std::string>>(kInputVars));
  cinn_op_desc.SetInput(operators::kNoNeedBufferX,
                        std::vector<std::string>(no_need_buffer_feeds.begin(),
                                                 no_need_buffer_feeds.end()));
  cinn_op_desc.SetOutput(operators::kOutputs,
                         subgraph.Get<std::vector<std::string>>(kOutputVars));
496
  cinn_op_desc.SetAttr(operators::kCompilationKey, compilation_key);
497 498 499 500
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
501
  // Add new links from or to the cinn launch op node
502
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
503 504

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
505 506 507 508 509 510
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
511 512 513 514 515 516
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
517 518
}

519
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
520 521
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
522
// Meanwhile, move all links of cluster to the cinn op.
523
void ReplaceSubGraphWithCinnOpNode(
524 525 526 527
    const GraphNodeSet& cluster,
    const GraphNodeSet& cluster_inputs,
    const GraphNodeSet& cluster_outputs,
    const GraphNodeSet& cluster_internals,
528
    int64_t compilation_key,
529 530
    const std::unordered_set<std::string>& deny_var_set,
    Graph* graph) {
531
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
532 533 534 535 536 537
  AddCinnOpToGraph(cluster,
                   cluster_inputs,
                   cluster_outputs,
                   compilation_key,
                   deny_var_set,
                   graph);
538
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
539 540 541
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

S
sneaxiy 已提交
542 543 544 545 546 547 548 549 550
static bool IsInplaceOp(const OpDesc& op_desc) {
  auto inputs = op_desc.InputArgumentNames();
  std::unordered_set<std::string> input_set(inputs.begin(), inputs.end());
  for (auto& name : op_desc.OutputArgumentNames()) {
    if (input_set.count(name) > 0) return true;
  }
  return false;
}

J
jiangcheng 已提交
551 552 553 554
// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
555
void SearchAllSubgraphs(Graph* graph) {
556 557
  auto allow_ops = StringSplit(FLAGS_allow_cinn_ops, kDelim);
  auto deny_ops = StringSplit(FLAGS_deny_cinn_ops, kDelim);
558 559
  OpTransInfo trans_info;
  auto teller = [&allow_ops, &deny_ops, &trans_info](const Node* node) {
560
    const auto& node_name = node->Name();
561
    bool registered = ::cinn::frontend::OpMapperRegistry::Global()->Find(
562
                          node_name) != nullptr;
563 564 565 566 567
    // skip the dynamic ops
    bool is_dynamic = false;
    if (trans_info.dynamic_op_cond.count(node_name)) {
      is_dynamic = trans_info.dynamic_op_cond.at(node_name)(node);
    }
568 569
    // if the op type is registered in CINN and allow_ops is not empty, return
    // true only when it is in allow_ops
570
    if (!allow_ops.empty()) {
571
      return registered && !is_dynamic && allow_ops.count(node_name);
572 573 574
    }
    // if the op type is registered in CINN and deny_ops is not empty, return
    // true only when it is not in deny_ops
575
    if (!deny_ops.empty()) {
576
      return registered && !is_dynamic && !deny_ops.count(node_name);
577
    }
S
sneaxiy 已提交
578

579 580
    // if the user doesn't set FLAGS_allow_cinn_ops and FLAGS_deny_cinn_ops,
    // return true only when it is registered in CINN
581 582
    return registered && !trans_info.default_deny_ops.count(node_name) &&
           !is_dynamic && (node->IsOp() && !IsInplaceOp(*node->Op()));
J
jiangcheng 已提交
583
  };
584 585
  VLOG(4) << "The allowed Cinn Ops: " << FLAGS_allow_cinn_ops;
  VLOG(4) << "The denied Cinn Ops: " << FLAGS_deny_cinn_ops;
J
jiangcheng 已提交
586 587
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();
588 589
  LOG(INFO) << "--- [build_cinn_pass] detected " << clusters.size()
            << " cinn supported subgraphs";
J
jiangcheng 已提交
590

591 592 593 594 595 596 597 598 599 600
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

601
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
602
  for (const auto& node_vec : clusters) {
603
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
604 605
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

606
    auto deny_var_set = trans_info.GetDenyVarNames(cluster_set);
607

J
jiangcheng 已提交
608
    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
609 610 611 612 613
    AnalyseClusterVariables(cluster_set,
                            deny_var_set,
                            &cluster_inputs,
                            &cluster_outputs,
                            &cluster_internals);
614 615 616 617 618 619 620

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

621 622
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
623
    auto compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
624
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
625 626
    VLOG(4) << "Compilation Key:\n"
            << cinn_compiler->ReadableKey(compilation_key);
627

628
    // Replace the found cluster to a new cinn op node
629 630 631 632 633 634 635
    ReplaceSubGraphWithCinnOpNode(cluster_set,
                                  cluster_inputs,
                                  cluster_outputs,
                                  cluster_internals,
                                  compilation_key,
                                  deny_var_set,
                                  graph);
J
jiangcheng 已提交
636 637
  }
}
638
}  // namespace
J
jiangcheng 已提交
639

640
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
641 642 643 644 645 646

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);